SeaWinds wind retrieval quality assessment

被引:0
|
作者
Long, DG [1 ]
Fletcher, AS [1 ]
Draper, DW [1 ]
机构
[1] Brigham Young Univ, Microwave Earth Remote Sensing Lab, Provo, UT 84602 USA
来源
IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS | 2000年
关键词
D O I
暂无
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The SeaWinds on QuikScat scatterometer is the first in a series of new scanning pencil-beam Ku-band scatterometers. The viewing geometry is significantly different than previous fan beam instruments, resulting in different characteristics in the retrieved winds. In this paper we provide an assessment of the reliability of the SeaWinds ambiguity selection using a SeaWinds data-only algorithm. An ambiguity selection quality assurance algorithm developed for NASA Scatterometer (NSCAT) data is modified for use with SeaWinds data. The algorithm uses the selected ambiguity field to estimate the parameters of a simple wind field model and examines significant differences between the fields, enabling detection of possible ambiguity errors. Tests against subjectively analyzed selection errors suggest that the algorithm correctly detects more than 94% of all ambiguity errors. Applying the algorithm, we find that the ambiguity selection accuracy exceeds 93%.
引用
收藏
页码:1036 / 1038
页数:3
相关论文
共 50 条
  • [31] A Wind and Rain Backscatter Model Derived From AMSR and SeaWinds Data
    Nielsen, Seth N.
    Long, David G.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (06): : 1595 - 1606
  • [32] Neural Network Based Quality Control of CYGNSS Wind Retrieval
    Balasubramaniam, Rajeswari
    Ruf, Christopher
    REMOTE SENSING, 2020, 12 (17) : 1 - 17
  • [33] The impact of RADARSAT ScanSAR image quality on ocean wind retrieval
    Vachon, PW
    Wolfe, J
    Hawkins, RK
    CEOS SAR WORKSHOP, 2000, 450 : 519 - 524
  • [34] Intercomparison of wind speeds observed by AMSR and SeaWinds on ADEOS-II
    Ebuchi, N
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 3314 - 3317
  • [35] Identification and possible correction of rain contamination in QuikScat/SeaWinds wind retrievals
    Connor, LN
    Chang, PS
    Carswell, JR
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1238 - 1240
  • [36] How much SeaWinds wind direction data improve AMSR SST
    Shibata, A
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 869 - 870
  • [37] Hurricane wind field estimation from SeaWinds at ultra high resolution
    Williams, Brent A.
    Long, David G.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1075 - 1078
  • [38] Data quality control method for VAD wind field retrieval based on coherent wind lidar
    Wang G.
    Liu B.
    Feng C.
    Wu S.
    Liu J.
    Wang X.
    Li R.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2018, 47 (02):
  • [39] Wind Retrieval from Constellations of Small SAR Satellites: Potential for Offshore Wind Resource Assessment
    Badger, Merete
    Fujita, Aito
    Orzel, Krzysztof
    Hatfield, Daniel
    Kelly, Mark
    ENERGIES, 2023, 16 (09)
  • [40] Assessment of the SeaWinds scatterometer for vegetation phenology monitoring across China
    Lu, Linlin
    Guo, Huadong
    Wang, Cuizhen
    Li, Qingting
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (15) : 5551 - 5568