Improved Semantic Segmentation of Water Bodies and Land in SAR Images Using Generative Adversarial Networks

被引:24
|
作者
Pai, M. M. Manohara [1 ]
Mehrotra, Vaibhav [1 ]
Verma, Ujjwal [2 ]
Pai, Radhika M. [1 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Informat & Commun Technol, Manipal, India
[2] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect & Commun Engn, Manipal, India
关键词
GANs; SAR images; semantic segmentation; U-net; deep learning;
D O I
10.1142/S1793351X20400036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The availability of computationally efficient and powerful Deep Learning frameworks and high-resolution satellite imagery has created new approach for developing complex applications in the field of remote sensing. The easy access to abundant image data repository made available by different satellites of space agencies such as Copernicus, Landsat, etc. has opened various avenues of research in monitoring the world's oceans, land, rivers, etc. The challenging research problem in this direction is the accurate identification and subsequent segmentation of surface water in images in the microwave spectrum. In the recent years, deep learning methods for semantic segmentation are the preferred choice given its high accuracy and ease of use. One major bottleneck in semantic segmentation pipelines is the manual annotation of data. This paper proposes Generative Adversarial Networks (GANs) on the training data (images and their corresponding labels) to create an enhanced dataset on which the networks can be trained, therefore, reducing human effort of manual labeling. Further, the research also proposes the use of deep-learning approaches such as U-Net and FCN-8 to perform an efficient segmentation of auto annotated, enhanced data of water body and land. The experimental results show that the U-Net model without GAN achieves superior performance on SAR images with pixel accuracy of 0.98 and F1 score of 0.9923. However, when augmented with GANs, the results saw a rise in these metrics with PA of 0.99 and F1 score of 0.9954.
引用
下载
收藏
页码:55 / 69
页数:15
相关论文
共 50 条
  • [21] Improving Road Semantic Segmentation Using Generative Adversarial Network
    Abdollahi, Abolfazl
    Pradhan, Biswajeet
    Sharma, Gaurav
    Maulud, Khairul Nizam Abdul
    Alamri, Abdullah
    IEEE ACCESS, 2021, 9 : 64381 - 64392
  • [22] Automatic Segmentation of Drusen and Exudates on Color Fundus Images using Generative Adversarial Networks
    Engelberts, Jonne
    Gonzalez-Gonzalo, Cristina
    Sanchez, Clara I.
    van Grinsven, Mark J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [23] Generating simulated SAR images using Generative Adversarial Network
    Liu, Wenlong
    Zhao, Yuejin
    Liu, Ming
    Dong, Liquan
    Liu, Xiaohua
    Hui, Mei
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLI, 2018, 10752
  • [24] Semantic Segmentation of High Resolution Satellite Imagery using Generative Adversarial Networks with Progressive Growing
    Collier, Edward
    Mukhopadhyay, Supratik
    Duffy, Kate
    Ganguly, Sangram
    Madanguit, Geri
    Kalia, Subodh
    Shreekant, Gayaka
    Nemani, Ramakrishna
    Michaelis, Andrew
    Li, Shuang
    Ganguly, Auroop
    REMOTE SENSING LETTERS, 2021, 12 (05) : 439 - 448
  • [25] ColorMapGAN: Unsupervised Domain Adaptation for Semantic Segmentation Using Color Mapping Generative Adversarial Networks
    Tasar, Onur
    Happy, S. L.
    Tarabalka, Yuliya
    Alliez, Pierre
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (10): : 7178 - 7193
  • [26] Cloud Removal with Fusion of High Resolution Optical and SAR Images Using Generative Adversarial Networks
    Gao, Jianhao
    Yuan, Qiangqiang
    Li, Jie
    Zhang, Hai
    Su, Xin
    REMOTE SENSING, 2020, 12 (01)
  • [27] APPLICATION OF GENERATIVE ADVERSARIAL NETWORK IN SEMANTIC SEGMENTATION
    Liu Kexin
    Guo Chenjun
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 343 - 348
  • [28] SegGAN: Semantic Segmentation with Generative Adversarial Network
    Zhang, Hulling
    Zhu, Xiaobin
    Zhang, Xiao-Yu
    Zhang, Naiguang
    Li, Peng
    Wang, Lei
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2018,
  • [29] Semantic Image Inpainting through Improved Wasserstein Generative Adversarial Networks
    Vitoria, Patricia
    Sintes, Joan
    Ballester, Coloma
    VISAPP: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4, 2019, : 249 - 260
  • [30] Conditional Generative Adversarial Refinement Networks for Unbalanced Medical Image Semantic Segmentation
    Rezaei, Mina
    Yang, Haojin
    Harmuth, Konstantin
    Meinel, Christoph
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 1836 - 1845