Membrane permeabilization by conjugated oligoelectrolytes accelerates whole-cell catalysis

被引:16
|
作者
Catania, Chelsea [1 ]
Ajo-Franklin, Caroline M. [2 ,3 ]
Bazan, Guillermo C. [4 ]
机构
[1] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Phys Biosci Div, 1 Cyclotron Rd Mail Stop 67R5115, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Synthet Biol Inst, 1 Cyclotron Rd Mail Stop 67R5115, Berkeley, CA 94720 USA
[4] Univ Calif Santa Barbara, Dept Chem & Biochem, Ctr Polymers & Organ Solids, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
BETA-GALACTOSIDASE ACTIVITY; COLI ALKALINE-PHOSPHATASE; GRAM-NEGATIVE BACTERIA; ESCHERICHIA-COLI; OUTER-MEMBRANE; PHOTOCURRENT GENERATION; SHEWANELLA-ONEIDENSIS; ELECTRON-TRANSFER; MOLECULAR-BASIS; E; COLI;
D O I
10.1039/c6ra23083k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conjugated oligoelectrolytes (COEs) boost the electrical performance of a wide range of bioelectrochemical systems, yet their mechanismof action remains incompletely understood. One possiblemode of action is that COEs permeabilize the cell envelope. We thus examined the effect of tetracationic COE, DSSN+, on the permeability of the inner and outer membrane of Escherichia coli by detecting extracellular activity of normally periplasmic and cytoplasmic enzymes. DSSN+ increases the release of the periplasmic enzyme alkaline phosphatase (ALP) up to 20-fold, but does not significantly change the release of the cytoplasmic enzyme beta-galactosidase. Additionally, DSSN+ caused a 2-fold increase in the turnover of a cytoplasmic substrate. These studies present a more complete understanding of the mechanism of action in bioelectrochemical systems and pivot future applications of COEs towards a method for improving whole-cell catalysis.
引用
收藏
页码:100300 / 100306
页数:7
相关论文
共 50 条
  • [41] Structural modulation of membrane-intercalating conjugated oligoelectrolytes decouples outer membrane permeabilizing and antimicrobial activities
    Moreland, Alex S.
    Limwongyut, Jakkarin
    Holton, Samuel J.
    Bazan, Guillermo C.
    CHEMICAL COMMUNICATIONS, 2023, 59 (81) : 12172 - 12175
  • [42] Efficient biosynthesis of creatine by whole-cell catalysis from guanidinoacetic acid in Corynebacterium glutamicum
    Li, Chunjian
    Sun, Pengdong
    Wei, Guoqing
    Zhu, Yuqi
    Li, Jingyuan
    Liu, Yanfeng
    Chen, Jian
    Deng, Yang
    SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, 2024, 9 (01) : 99 - 107
  • [43] WHOLE-CELL BASED BIOSENSORS
    HICKMAN, JJ
    FOSTER, KE
    KOWTHA, V
    BEY, P
    STENGER, DA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 207 : 76 - BTEC
  • [45] Whole-cell biocatalysts by design
    Lin, Baixue
    Tao, Yong
    MICROBIAL CELL FACTORIES, 2017, 16
  • [46] The future of whole-cell modeling
    Macklin, Derek N.
    Ruggero, Nicholas A.
    Covert, Markus W.
    CURRENT OPINION IN BIOTECHNOLOGY, 2014, 28 : 111 - 115
  • [47] The principles of whole-cell modeling
    Karr, Jonathan R.
    Takahashi, Koichi
    Funahashi, Akira
    CURRENT OPINION IN MICROBIOLOGY, 2015, 27 : 18 - 24
  • [48] Whole-cell biocatalysts by design
    Baixue Lin
    Yong Tao
    Microbial Cell Factories, 16
  • [49] Whole-cell aquatic biosensors
    Evgeni Eltzov
    Robert S. Marks
    Analytical and Bioanalytical Chemistry, 2011, 400 : 895 - 913
  • [50] Reconstructing whole-cell models
    Hodgman, C
    Goryanin, I
    Juty, N
    DRUG DISCOVERY TODAY, 2001, 6 (15) : S109 - S112