A Modified Fourier-Galerkin Method for the Poisson and Helmholtz Equations

被引:8
|
作者
Naess, Ole F. [1 ]
Eckhoff, Knut S. [1 ]
机构
[1] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
Fourier method; Poisson equation; Helmholtz equation; Gibbs phenomenon;
D O I
10.1023/A:1015162328151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a modified Fourier-Galerkin method for the numerical solution of the Poisson and Helmholtz equations in a d-dimensional box. The inversion of the differential operators requires O(N-d) operations, where Nd is the number of unknowns. The total cost of the presented algorithms is O(N-d log(2) N), due to the application of the Fast Fourier Transform (FFT) at the preprocessing stage. The method is based on an extension of the Fourier spaces by adding appropriate functions. Utilizing suitable bilinear forms, approximate projections onto these extended spaces give rapidly converging and highly accurate series expansions.
引用
收藏
页码:529 / 539
页数:11
相关论文
共 50 条
  • [31] The Galerkin–Fourier method for the study of nonlocal parabolic equations
    Fuensanta Andrés
    Julio Muñoz
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [32] Fast Fourier-Galerkin methods for first-kind logarithmic-kernel integral equations on open arcs
    WANG Bo1
    2School of Information Science and Engineering
    3Department of Mathematics
    4Department of Scientific Computing and Computer Applications
    Science China Mathematics, 2010, (01) : 1 - 22
  • [33] Fast Fourier-Galerkin methods for first-kind logarithmic-kernel integral equations on open arcs
    WANG BoWANG Rui XU YueShengAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing ChinaSchool of Information Science and EngineeringGraduate University of the Chinese Academy of SciencesBeijing ChinaDepartment of MathematicsSyracuse UniversitySyracuseNY USADepartment of Scientific Computing and Computer ApplicationsSun Yatsen UniversityGuangzhou China
    Science in China(Series A:Mathematics), 2010, 53 (01) : 1 - 22
  • [34] Fast Fourier-Galerkin methods for first-kind logarithmic-kernel integral equations on open arcs
    Bo Wang
    Rui Wang
    YueSheng Xu
    Science in China Series A: Mathematics, 2010, 53 : 1 - 22
  • [35] Fast Fourier-Galerkin methods for first-kind logarithmic-kernel integral equations on open arcs
    Wang Bo
    Wang Rui
    Xu YueSheng
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (01) : 1 - 22
  • [36] Steklov特征值问题的快速Fourier-Galerkin方法
    揭蓉
    陈健军
    朱小玲
    隆广庆
    南宁师范大学学报(自然科学版), 2020, 37 (自然科学版) : 8 - 17
  • [37] Fourier-Galerkin domain truncation method for Stokes' first problem with Oldroyd four-constant liquid
    Akyildiz, F. Talay
    Vajravelu, K.
    Ozekes, H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (11) : 2452 - 2457
  • [38] A Modified Weak Galerkin Method for Stokes Equations
    Zhang, Li
    Feng, Minfu
    Zhang, Jian
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (04) : 890 - 910
  • [39] MOMENT PRESERVING FOURIER-GALERKIN SPECTRAL METHODS AND APPLICATION TO THE BOLTZMANN EQUATION
    PARESCHI, L. O. R. E. N. Z. O.
    REY, T. H. O. M. A. S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (06) : 3216 - 3240
  • [40] Modified variational iteration method for solving Helmholtz equations
    Noor M.A.
    Mohyud-Din S.T.
    Computational Mathematics and Modeling, 2009, 20 (1) : 40 - 50