A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments

被引:67
|
作者
Li, Yuqi [1 ]
Zhang, Hui [1 ]
Fan, Mizi [1 ,2 ]
Zhuang, Jiandong [1 ]
Chen, Lihui [1 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Mat Engn, Fuzhou 350002, Peoples R China
[2] Brunel Univ, Nanocellulose & Biocomposites Res Ctr, Coll Engn Design & Phys Sci, Uxbridge UB8 3PH, Middx, England
基金
中国国家自然科学基金;
关键词
NANOFIBRILLATED CELLULOSE; UNDERWATER SUPEROLEOPHOBICITY; SUPERHYDROPHOBIC SURFACES; HIGHLY EFFICIENT; COATED MESH; OIL/WATER; MEMBRANES; CAPTURE; FILM; WETTABILITY;
D O I
10.1039/c6cp04284h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oil-water separation has recently become an important subject due to the increasing incidence of oil spills. Materials with underwater superoleophobic properties have aroused considerable interest due to their cost-effectiveness, environmental friendliness and anti-fouling properties. This paper presents a robust salt-tolerant superoleophobic aerogel inspired by seaweed used without any further chemical modification for oil-seawater separation. The green aerogel is prepared by freeze-drying of sodium alginate (SA)-nanofibrillated cellulose (NFC) using Ca2+ ions as the crosslinking agent. The three-dimensional (3D) interconnected network structure of the developed aerogel ensures its high mechanical strength and good flexibility. The natural hydrophilicity of the polysaccharides contained in the aerogel ensures its excellent underwater superoleophobicity, antifouling and salt-tolerance properties. More impressively, the as-prepared aerogel can even keep its underwater superoleophobicity and high hydrophilicity after being immersed in seawater for 30 days, indicating its good stability in marine environments. Furthermore, the aerogel could separate oil-seawater mixtures with a high separation efficiency (of up to 99.65%) and good reusability (at least 40 cycles). The facile and green fabrication process combined with the excellent separation performance and good reusability makes it possible to develop engineering materials for oil-water separation in marine environments.
引用
收藏
页码:25394 / 25400
页数:7
相关论文
共 50 条
  • [31] Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation
    Bu, Yiming
    Huang, Jingjing
    Zhang, Shiyu
    Wang, Yinghua
    Gu, Shaojin
    Cao, Genyang
    Yang, Hongjun
    Ye, Dezhan
    Zhou, Yingshan
    Xu, Weilin
    APPLIED SURFACE SCIENCE, 2018, 440 : 535 - 546
  • [32] Durable Superoleophobic Janus Fabric with Oil Repellence and Anisotropic Water-Transport Integration toward Energetic-Efficient Oil-Water Separation
    Li, Feiran
    Wang, Shuai
    Zhao, Xuezeng
    Shao, Lu
    Pan, Yunlu
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (32) : 37170 - 37181
  • [33] Multifunctional superhydrophilic/underwater superoleophobic lignin-based polyurethane foam for highly efficient oil-water separation and water purification
    Chen, Jing
    Wu, Jialong
    Zhong, Yinyan
    Ma, Xiaozhen
    Lv, Wanrong
    Zhao, Honglong
    Zhu, Jin
    Yan, Ning
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 311
  • [34] Peroxidase-Catalyzed Fabrication of a Mechanically Robust Nanofibrillated Cellulose-Based Aerogel with Antibacterial Activity for Efficient Oil-Water Separation
    Fan, Bingjie
    Lin, Chengwei
    Li, Zirong
    Cui, Li
    Xu, Bo
    Yu, Yuanyuan
    Wang, Qiang
    Wang, Ping
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (12) : 10494 - 10505
  • [35] Bio-inspired fabrication of superhydrophilic and underwater superoleophobic alumina membranes for highly efficient oil/water separation
    Zhou, Wenjin
    Zhou, Mingyang
    Zhang, Huapeng
    Tang, Hongyan
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2021, 18 (02) : 361 - 372
  • [36] Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation
    Wang, Meng
    Peng, Min
    Zhu, Jiang
    Li, Yi-Dong
    Zeng, Jian-Bing
    CARBOHYDRATE POLYMERS, 2020, 244
  • [37] Underwater superoleophobic PVDF membrane with robust stability for highly efficient oil-in-water emulsion separation
    Zhong, Qi
    Sun, Qing
    Xiang, Bin
    Mu, Peng
    Li, Jian
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (23) : 11232 - 11241
  • [38] Bio-Inspired Eco-Friendly Superhydrophilic/Underwater Superoleophobic Cotton for Oil-Water Separation and Removal of Heavy Metals
    Li, Feiran
    Wang, Jian
    Wang, Zhuochao
    Ji, Dongchao
    Wang, Shuai
    Wei, Pengcheng
    Cao, Wenxin
    BIOMIMETICS, 2022, 7 (04)
  • [39] Bio-inspired fabrication of superhydrophilic and underwater superoleophobic alumina membranes for highly efficient oil/water separation
    Wenjin Zhou
    Mingyang Zhou
    Huapeng Zhang
    Hongyan Tang
    Journal of Coatings Technology and Research, 2021, 18 : 361 - 372
  • [40] One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation
    Li, Nan
    Yue, Qinyan
    Gao, Baoyu
    Xu, Xing
    Su, Ruidian
    Yu, Bingjie
    JOURNAL OF CLEANER PRODUCTION, 2019, 207 : 764 - 771