A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments

被引:67
|
作者
Li, Yuqi [1 ]
Zhang, Hui [1 ]
Fan, Mizi [1 ,2 ]
Zhuang, Jiandong [1 ]
Chen, Lihui [1 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Mat Engn, Fuzhou 350002, Peoples R China
[2] Brunel Univ, Nanocellulose & Biocomposites Res Ctr, Coll Engn Design & Phys Sci, Uxbridge UB8 3PH, Middx, England
基金
中国国家自然科学基金;
关键词
NANOFIBRILLATED CELLULOSE; UNDERWATER SUPEROLEOPHOBICITY; SUPERHYDROPHOBIC SURFACES; HIGHLY EFFICIENT; COATED MESH; OIL/WATER; MEMBRANES; CAPTURE; FILM; WETTABILITY;
D O I
10.1039/c6cp04284h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oil-water separation has recently become an important subject due to the increasing incidence of oil spills. Materials with underwater superoleophobic properties have aroused considerable interest due to their cost-effectiveness, environmental friendliness and anti-fouling properties. This paper presents a robust salt-tolerant superoleophobic aerogel inspired by seaweed used without any further chemical modification for oil-seawater separation. The green aerogel is prepared by freeze-drying of sodium alginate (SA)-nanofibrillated cellulose (NFC) using Ca2+ ions as the crosslinking agent. The three-dimensional (3D) interconnected network structure of the developed aerogel ensures its high mechanical strength and good flexibility. The natural hydrophilicity of the polysaccharides contained in the aerogel ensures its excellent underwater superoleophobicity, antifouling and salt-tolerance properties. More impressively, the as-prepared aerogel can even keep its underwater superoleophobicity and high hydrophilicity after being immersed in seawater for 30 days, indicating its good stability in marine environments. Furthermore, the aerogel could separate oil-seawater mixtures with a high separation efficiency (of up to 99.65%) and good reusability (at least 40 cycles). The facile and green fabrication process combined with the excellent separation performance and good reusability makes it possible to develop engineering materials for oil-water separation in marine environments.
引用
收藏
页码:25394 / 25400
页数:7
相关论文
共 50 条
  • [1] A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments
    Yuqi Li
    Hui Zhang
    Mizi Fan
    Peitao Zheng
    Jiandong Zhuang
    Lihui Chen
    Scientific Reports, 7
  • [2] A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments
    Li, Yuqi
    Zhang, Hui
    Fan, Mizi
    Zheng, Peitao
    Zhuang, Jiandong
    Chen, Lihui
    SCIENTIFIC REPORTS, 2017, 7
  • [3] A robust salt-tolerant superoleophobic chitosan/nanofibrillated cellulose aerogel for highly efficient oil/water separation
    Zhang, Hui
    Li, Yuqi
    Shi, Ronghui
    Chen, Lihui
    Fan, Mizi
    CARBOHYDRATE POLYMERS, 2018, 200 : 611 - 615
  • [4] Underwater Superoleophobic and Salt-Tolerant Sodium Alginate/N-Succinyl Chitosan Composite Aerogel for Highly Efficient Oil-Water Separation
    Wang, Cheng
    He, Guanghua
    Cao, Jilong
    Fan, Lihong
    Cai, Weiquan
    Yin, Yihua
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (03) : 1124 - 1133
  • [5] Robust photopolymerized superoleophobic/superhydrophilic mesh for oil-water separation
    Wang, Jian
    Li, Feiran
    Pan, Yunlu
    Chen, Fang
    Huang, Cong
    Zhao, Xuezeng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 701
  • [6] Fish-Scale-Inspired Underwater Superoleophobic Nanosurface for Efficient Oil-Water Separation and Manipulation
    Bhat, Irfan Majeed
    Ara, Tabassum
    Lone, Saifullah
    ACS APPLIED ENGINEERING MATERIALS, 2024, 2 (10): : 2414 - 2424
  • [7] Facile preparation of superhydrophilic and superoleophobic sand for efficient oil-water separation
    Zhu, Guoxin
    Zhang, Xiong
    He, Yan
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 61
  • [8] Superhydrophilic and underwater superoleophobic mesh coating for efficient oil-water separation
    Li, Jianhua
    Cheng, Hei Man
    Chan, Ching Ying
    Ng, Pui Fai
    Chen, Lei
    Fei, Bin
    Xin, John H.
    RSC ADVANCES, 2015, 5 (64) : 51537 - 51541
  • [9] Bioinspired superoleophobic/superhydrophilic functionalized cotton for efficient separation of immiscible oil-water mixtures and oil-water emulsions
    Li, Feiran
    Bhushan, Bharat
    Pan, Yunlu
    Zhao, Xuezeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 548 : 123 - 130
  • [10] Nature-inspired Polysaccharide-based Aerogel for Oil-water Separation
    Fu, Ye
    Ai, Shulun
    Guo, Zhiguang
    Liu, Weimin
    JOURNAL OF BIONIC ENGINEERING, 2023, 20 (05) : 1956 - 1966