Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods

被引:93
|
作者
Zhao, Pei [1 ]
Guo, Jing [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
关键词
field effect transistors; Green's function methods; nanoelectronics; Poisson equation; semiconductor device models; semiconductor materials; graphene; SIMULATION; FETS;
D O I
10.1063/1.3073875
中图分类号
O59 [应用物理学];
学科分类号
摘要
A computationally efficient mode space simulation method for atomistic simulation of a graphene nanoribbon field-effect transistor in the ballistic limits is developed. The proposed simulation scheme, which solves the nonequilibrium Green's function coupled with a three dimensional Poisson equation, is based on the atomistic Hamiltonian in a decoupled mode space. The mode space approach, which only treats a few modes (subbands), significantly reduces the simulation time. Additionally, the edge bond relaxation and the third nearest neighbor effects are also included in the quantum transport solver. Simulation examples show that the mode space approach can significantly decrease the simulation cost by about an order of magnitude, yet the results are still accurate. This article also demonstrates that the effects of the edge bond relaxation and the third nearest neighbor significantly influence the transistor's performance and are necessary to be included in the modeling.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: A full real-space quantum transport simulation
    Liang, Gengchiau
    Neophytou, Neophytos
    Lundstrom, Mark S.
    Nikonov, Dmitri E.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (05)
  • [22] Variation in characteristics of graphene nanoribbon field-effect transistors caused by edge disorder: Computational simulation of atomistic device
    Takashima, Kengo
    Konabe, Satoru
    Sasaoka, Kenji
    Yamamoto, Takahiro
    APPLIED PHYSICS EXPRESS, 2018, 11 (09)
  • [23] Gate capacitance model for the design of graphene nanoribbon array field-effect transistors
    Son, Myungwoo
    Ki, Hangil
    Kim, Kihyeun
    Chung, Sunki
    Lee, Woong
    Ham, Moon-Ho
    RSC ADVANCES, 2015, 5 (68): : 54861 - 54866
  • [24] Quantum transport simulation of graphene-nanoribbon field-effect transistors with defects
    Chen, Shanmeng
    Van de Put, Maarten L.
    Fischetti, Massimo, V
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (01) : 21 - 37
  • [25] Room-Temperature Graphene-Nanoribbon Tunneling Field-Effect Transistors
    Hwang, Wan Sik
    Zhao, Pei
    Kim, Sung Geun
    Yan, Rusen
    Klimeck, Gerhard
    Seabaugh, Alan
    Fullerton-Shirey, Susan K.
    Xing, Huili Grace
    Jena, Debdeep
    NPJ 2D MATERIALS AND APPLICATIONS, 2019, 3 (1)
  • [26] Graphene Nanoribbon Field-Effect Transistors with Top-Gate Polymer Dielectrics
    Jeong, Beomjin
    Wuttke, Michael
    Zhou, Yazhou
    Muellen, Klaus
    Narita, Akimitsu
    Asadi, Kamal
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (06) : 2667 - 2671
  • [27] An analytical drain current model for graphene nanoribbon tunnel field-effect transistors
    Bao, Jiarui
    Hu, Shuyan
    Hu, Guangxi
    Hu, Laigui
    Liu, Ran
    Zheng, Lirong
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (09)
  • [28] Graphene Nanoribbon Tunneling Field-Effect Transistors With a Semiconducting and a Semimetallic Heterojunction Channel
    Da, Haixia
    Lam, Kai-Tak
    Samudra, G.
    Chin, Sai-Kong
    Liang, Gengchiau
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (05) : 1454 - 1461
  • [29] Theoretical Investigation of Graphene Nanoribbon Field-Effect Transistors Designed for Digital Applications
    Harada, Naoki
    Sato, Shintaro
    Yokoyama, Naoki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (09)
  • [30] Quantum transport simulation of graphene-nanoribbon field-effect transistors with defects
    Shanmeng Chen
    Maarten L. Van de Put
    Massimo V. Fischetti
    Journal of Computational Electronics, 2021, 20 : 21 - 37