Vortex states in nanoscale superconducting squares: The influence of quantum confinement

被引:22
|
作者
Zhang, L. -F. [1 ]
Covaci, L. [1 ]
Milosevic, M. V. [1 ]
Berdiyorov, G. R. [1 ]
Peeters, F. M. [1 ]
机构
[1] Univ Antwerp, Dept Fys, B-2020 Antwerp, Belgium
关键词
ELECTRONIC-STRUCTURE; ANTIVORTICES; VORTICES; ENERGY; CORE; LINE;
D O I
10.1103/PhysRevB.88.144501
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Intermittent superconductivity and unconventional vortex configurations in nanoscale superconducting noncircular systems
    Yang, Ze-Lei
    Zha, Guo-Qiao
    Zhou, Shi-Ping
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2018, 544 : 6 - 12
  • [32] Tunable Quantum Confinement in Individual Nanoscale Quantum Dots via Interfacial Engineering
    Ren, Hui-Ying
    Mao, Yue
    Ren, Ya-Ning
    Sun, Qing-Feng
    He, Lin
    ACS NANO, 2024, 19 (01) : 1352 - 1360
  • [33] Investigating the impact of quantum confinement on the THz behavior of Nanoscale FinFETs
    Pech, Mathias
    Schulz, Dirk
    SOLID-STATE ELECTRONICS, 2023, 210
  • [34] Quantum confinement effect of CdSe induced by nanoscale solvothermal reaction
    Lee, Jin-Wook
    Im, Jeong-Hyuk
    Park, Nam-Gyu
    NANOSCALE, 2012, 4 (20) : 6642 - 6648
  • [35] Quantum Confinement Effect in a Nanoscale Mo/Si Multilayer Structure
    Kumar, N.
    Kozakov, A. T.
    Nezhdanov, A., V
    Smertin, R. M.
    Polkovnikov, V. N.
    Chkhalo, N., I
    Mashin, A., I
    Nikolskii, A. N.
    Scrjabin, A. A.
    Zuev, S. Y.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (32): : 17795 - 17805
  • [36] Quantum Confinement Effects in Nanoscale-Thickness InAs Membranes
    Takei, Kuniharu
    Fang, Hui
    Kumar, S. Bala
    Kapadia, Rehan
    Gao, Qun
    Madsen, Morten
    Kim, Ha Sul
    Liu, Chin-Hung
    Chueh, Yu-Lun
    Plis, Elena
    Krishna, Sanjay
    Bechtel, Hans A.
    Guo, Jing
    Javey, Ali
    NANO LETTERS, 2011, 11 (11) : 5008 - 5012
  • [37] Quantum confinement in nanoscale silicon: The correlation of size with bandgap and luminescence
    von Behren, J
    van Buuren, T
    Zacharias, M
    Chimowitz, EH
    Fauchet, PM
    SOLID STATE COMMUNICATIONS, 1998, 105 (05) : 317 - 322
  • [38] Direct Imaging of Vortex Polygons and Vortex Shells in Mesoscopic Squares of a Weak Pinning Superconducting Thin Film
    Kokubo, Nobuhito
    Okayasu, Satoru
    Nojima, Tsutomu
    Tamochi, Hirotaka
    Shinozaki, Bunju
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2014, 83 (08)
  • [39] Quasiparticle states around a half-quantum vortex in a chiral p-wave superconducting state
    Kikuchi, S.
    Kikuchi, Y.
    Yoshioka, T.
    Tsuchiura, H.
    Sigrist, M.
    PROCEEDINGS OF THE 27TH INTERNATIONAL SYMPOSIUM ON SUPERCONDUCTIVITY (ISS 2014), 2015, 65 : 93 - 96
  • [40] Features of vortex states in quantum dots
    Huang, GM
    Liu, YM
    Bao, CG
    CHINESE PHYSICS LETTERS, 2003, 20 (04) : 557 - 560