3D printing of conducting polymers

被引:654
|
作者
Yuk, Hyunwoo [1 ]
Lu, Baoyang [2 ,3 ,4 ]
Lin, Shen [5 ]
Qu, Kai [3 ]
Xu, Jingkun [2 ,3 ]
Luo, Jianhong [5 ]
Zhao, Xuanhe [1 ,4 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Jiangxi Sci & Technol Normal Univ, Flexible Elect Innovat Inst, Nanchang 330013, Jiangxi, Peoples R China
[3] Jiangxi Sci & Technol Normal Univ, Sch Pharm, Nanchang 330013, Jiangxi, Peoples R China
[4] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Zhejiang Univ Med, Collaborat Innovat Ctr Brain Sci, Minist Hlth China, Dept Neurobiol,Key Lab Med Neurobiol, Hangzhou 310058, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEL; MICROELECTRODES; CIRCUITS; PEDOTPSS; ENERGY; SOFT;
D O I
10.1038/s41467-020-15316-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conducting polymers are promising material candidates in diverse applications including energy storage, flexible electronics, and bioelectronics. However, the fabrication of conducting polymers has mostly relied on conventional approaches such as ink-jet printing, screen printing, and electron-beam lithography, whose limitations have hampered rapid innovations and broad applications of conducting polymers. Here we introduce a high-performance 3D printable conducting polymer ink based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for 3D printing of conducting polymers. The resultant superior printability enables facile fabrication of conducting polymers into high resolution and high aspect ratio microstructures, which can be integrated with other materials such as insulating elastomers via multi-material 3D printing. The 3D-printed conducting polymers can also be converted into highly conductive and soft hydrogel microstructures. We further demonstrate fast and streamlined fabrications of various conducting polymer devices, such as a soft neural probe capable of in vivo single-unit recording.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Modeling polymers for tactile learning with 3D printing
    Nolan, Michelle
    Davidson, Tammy
    Gonzalez, Sara Russell
    Williams, Ernie
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [22] Polymers for 3D Printing Methods, Properties, and Characteristics
    不详
    [J]. JOURNAL OF PRINT AND MEDIA TECHNOLOGY RESEARCH, 2022, 11 (02): : 148 - 148
  • [23] Printing conducting polymers
    Weng, B.
    Shepherd, R. L.
    Crowley, K.
    Killard, A. J.
    Wallace, G. G.
    [J]. ANALYST, 2010, 135 (11) : 2779 - 2789
  • [24] Smart polymers and nanocomposites for 3D and 4D printing
    Falahati, Mojtaba
    Ahmadvand, Parvaneh
    Safaee, Shahriar
    Chang, Yu-Chung
    Lyu, Zhaoyuan
    Chen, Roland
    Li, Lei
    Lin, Yuehe
    [J]. MATERIALS TODAY, 2020, 40 : 215 - 245
  • [25] Recent Advances in 3D Printing of Polymers for Application in Prosthodontics
    Dimitrova, Mariya
    Vlahova, Angelina
    Kalachev, Yavor
    Zlatev, Stefan
    Kazakova, Rada
    Capodiferro, Saverio
    [J]. POLYMERS, 2023, 15 (23)
  • [26] Chemical analysis of polymers used for 3D printing of firearms
    Falardeau, Mylene S.
    Mireault, Caroline
    Daoust, Benoit
    Muehlethaler, Cyril
    [J]. FORENSIC SCIENCE INTERNATIONAL, 2024, 357
  • [27] 3D Printing Polymers with Supramolecular Functionality for Biological Applications
    Pekkanen, Allison M.
    Mondschein, Ryan J.
    Williams, Christopher B.
    Long, Timothy E.
    [J]. BIOMACROMOLECULES, 2017, 18 (09) : 2669 - 2687
  • [28] Special Issue Editorial: Applications of 3D Printing for Polymers
    Egan, Paul E. F.
    [J]. POLYMERS, 2023, 15 (07)
  • [29] 3D Printing and Shaping Polymers, Composites, and Nanocomposites: A Review
    Azlin, M. N. M.
    Ilyas, R. A.
    Zuhri, M. Y. M.
    Sapuan, S. M.
    Harussani, M. M.
    Sharma, Shubham
    Nordin, A. H.
    Nurazzi, N. M.
    Afiqah, A. N.
    [J]. POLYMERS, 2022, 14 (01)
  • [30] Inkjet 3D Printing of Polymers Resistant to Fungal Attachment
    He, Yinfeng
    Vallieres, Cindy
    Alexander, Morgan R.
    Wildman, Ricky D.
    Avery, Simon, V
    [J]. BIO-PROTOCOL, 2021, 11 (09):