Prediction of effective moduli of carbon nanotube-reinforced composites with waviness and debonding

被引:110
|
作者
Shao, L. H. [1 ,5 ]
Luo, R. Y. [3 ]
Bai, S. L. [1 ,4 ]
Wang, J. [1 ,2 ]
机构
[1] Peking Univ, LTCS, Beijing 100871, Peoples R China
[2] Peking Univ, Coll Engn, Dept Mech & Aerosp Engn, Beijing 100871, Peoples R China
[3] Beihang Univ, Sch Sci, Beijing 100083, Peoples R China
[4] Peking Univ, Coll Engn, Dept Adv Mat & Nanotechnol, Beijing 100871, Peoples R China
[5] Chinese Acad Sci, Inst Mech, Beijing 100080, Peoples R China
关键词
Carbon nanotube; Composite; Waviness; Debonding; Effective modulus; NONLINEAR ELASTIC BEHAVIOR; MECHANICAL-PROPERTIES; POLYMER COMPOSITES; FIBER WAVINESS; MATRIX COMPOSITE; NANOCOMPOSITES; FABRICATION; INCLUSIONS; STIFFNESS; MODEL;
D O I
10.1016/j.compstruct.2008.02.011
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Carbon nanotubes (CNTs) have been regarded as ideal reinforcements of high-performance composites with enormous applications. However, the waviness of the CNTs and the interfacial bonding condition between them and the matrix are two key factors that influence the reinforcing efficiency. In this paper, the effects of the waviness of the CNTs and the interfacial debonding between them and the matrix on the effective moduli of CNT-reinforced composites are studied. A simple analytical model is presented to investigate the influence of the waviness on the effective moduli. Then, two methods are proposed to examine the influence of the debonding. It is shown that both the waviness and debonding can significantly reduce the stiffening effect of the CNTs. The effective moduli are very sensitive to the waviness when the latter is small, and this sensitivity decreases with the increase of the waviness. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:274 / 281
页数:8
相关论文
共 50 条
  • [41] Multi-walled carbon nanotube-reinforced magnesium alloy composites
    Shimizu, Y.
    Miki, S.
    Soga, T.
    Itoh, I.
    Todoroki, H.
    Hosono, T.
    Sakaki, K.
    Hayashi, T.
    Kim, Y. A.
    Endo, M.
    Morimoto, S.
    Koide, A.
    SCRIPTA MATERIALIA, 2008, 58 (04) : 267 - 270
  • [42] Stress Transfer Characterization at Fiber Break in Carbon Nanotube-Reinforced Composites
    Kirtania, Sushen
    Chakraborty, Debabrata
    ADVANCED NANOMATERIALS AND NANOTECHNOLOGY, 2013, 143 : 333 - 346
  • [43] Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites
    Li, K
    Gao, XL
    Roy, AK
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2006, 13 (04) : 317 - 328
  • [44] Effect of Polymer Matrix Stiffness on Carbon Nanotube-Reinforced Polymer Composites
    Dolbin, I. V.
    Magomedov, Gas. M.
    Kozlov, G. V.
    RUSSIAN PHYSICS JOURNAL, 2023, 65 (12) : 2182 - 2185
  • [45] Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites
    Qunfeng Cheng
    Jiaping Wang
    Kaili Jiang
    Qunqing Li
    Shoushan Fan
    Journal of Materials Research, 2008, 23 : 2975 - 2983
  • [46] Effect of Carbon Nanotube Waviness on the Elastic Properties of the Fuzzy Fiber Reinforced Composites
    Kundalwal, S. I.
    Ray, M. C.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2013, 80 (02):
  • [47] Electrospun Carbon Nanotube-Reinforced Nanofiber
    Kim, Sung Min
    Kim, Sung Hee
    Choi, Myong Soo
    Lee, Jun Young
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (03) : 2908 - 2911
  • [48] The effect of debonding angle on the reduction of effective moduli of particle and fiber-reinforced composites
    Zhao, YH
    Weng, GJ
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2002, 69 (03): : 292 - 302
  • [49] The effect of debonding angle on the reduction of effective moduli of particle and fiber-reinforced composites
    Zhao, Y.H.
    Weng, G.J.
    1600, American Society of Mechanical Engineers (69):
  • [50] Carbon nanotube-reinforced aluminium strips
    Esawi, Amal M. K.
    El Borady, Mostafa A.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (02) : 486 - 492