Interval Graph Limits

被引:11
|
作者
Diaconis, Persi [1 ]
Holmes, Susan [2 ]
Janson, Svante [3 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] Uppsala Univ, Dept Math, S-75238 Uppsala, Sweden
基金
美国国家科学基金会;
关键词
interval graphs; graph limits; intersection graphs; RANDOM INTERSECTION GRAPHS; TOPOLOGY;
D O I
10.1007/s00026-012-0175-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We work out a graph limit theory for dense interval graphs. The theory developed departs from the usual description of a graph limit as a symmetric function W(x, y) on the unit square, with x and y uniform on the interval (0, 1). Instead, we fix a W and change the underlying distribution of the coordinates x and y. We find choices such that our limits are continuous. Connections to random interval graphs are given, including some examples. We also show a continuity result for the chromatic number and clique number of interval graphs. Some results on uniqueness of the limit description are given for general graph limits.
引用
收藏
页码:27 / 52
页数:26
相关论文
共 50 条
  • [31] PERFORMANCE OF A DEPHLEGMATOR AT LIMITS OF CONCENTRATION INTERVAL
    WONDRAK, GAM
    CHEMIE INGENIEUR TECHNIK, 1974, 46 (02) : 65 - 65
  • [32] Fundamental Limits of Deep Graph Convolutional Networks for Graph Classification
    Magner, Abram
    Baranwal, Mayank
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3218 - 3233
  • [33] EXTREMAL VALUES OF THE INTERVAL NUMBER OF A GRAPH
    GRIGGS, JR
    WEST, DB
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (01): : 1 - 7
  • [34] PROPERTIES OF THE INTERVAL GRAPH OF A BOOLEAN FUNCTION
    Haviarova, L.
    Toman, E.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2013, 82 (02): : 191 - 200
  • [35] HAMILTONIAN CIRCUITS IN INTERVAL GRAPH GENERALIZATIONS
    BERTOSSI, AA
    BONUCCELLI, MA
    INFORMATION PROCESSING LETTERS, 1986, 23 (04) : 195 - 200
  • [36] A CHARACTERIZATION OF THE INTERVAL FUNCTION OF A CONNECTED GRAPH
    NEBESKY, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1994, 44 (01) : 173 - 178
  • [37] Axiomatic characterization of the interval function of a graph
    Mulder, Henry Martyn
    Nebesky, Ladislav
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1172 - 1185
  • [38] THE ORDER DIFFERENCE INTERVAL GRAPH OF A GROUP
    Balakrishnan, P.
    Kala, R.
    TRANSACTIONS ON COMBINATORICS, 2012, 1 (02) : 59 - 65
  • [39] Games on interval and permutation graph representations
    Enright, Jessica
    Stewart, Lorna
    THEORETICAL COMPUTER SCIENCE, 2016, 609 : 87 - 103
  • [40] On the Caratheodory number of interval and graph convexities
    Dourado, Mitre C.
    Rautenbach, Dieter
    dos Santos, Vinicius Fernandes
    Schaefer, Philipp M.
    Szwarcfiter, Jayme L.
    THEORETICAL COMPUTER SCIENCE, 2013, 510 : 127 - 135