Groundwater level forecasting in a shallow aquifer using artificial neural network approach

被引:242
|
作者
Nayak, PC [1 ]
Rao, YRS
Sudheer, KP
机构
[1] Natl Inst Hydrol, Deltaic Reg Ctr, Kakinada 533003, India
[2] Indian Inst Technol, Dept Civil Engn, Madras 600036, Tamil Nadu, India
关键词
neural networks; groundwater levels; forecasting;
D O I
10.1007/s11269-006-4007-z
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Forecasting the ground water level fluctuations is an important requirement for planning conjunctive use in any basin. This paper reports a research study that investigates the potential of artificial neural network technique in forecasting the groundwater level fluctuations in an unconfined coastal aquifer in India. The most appropriate set of input variables to the model are selected through a combination of domain knowledge and statistical analysis of the available data series. Several ANN models are developed that forecasts the water level of two observation wells. The results suggest that the model predictions are reasonably accurate as evaluated by various statistical indices. An input sensitivity analysis suggested that exclusion of antecedent values of the water level time series may not help the model to capture the recharge time for the aquifer and may result in poorer performance of the models. In general, the results suggest that the ANN models are able to forecast the water levels up to 4 months in advance reasonably well. Such forecasts may be useful in conjunctive use planning of groundwater and surface water in the coastal areas that help maintain the natural water table gradient to protect seawater intrusion or water logging condition.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 50 条
  • [21] Forecasting human exposure to PM10 at the national level using an artificial neural network approach
    Antanasijevic, Davor Z.
    Ristic, Mirjana D.
    Peric-Grujic, Aleksandra A.
    Pocajt, Viktor V.
    JOURNAL OF CHEMOMETRICS, 2013, 27 (06) : 170 - 177
  • [22] Forecasting the Baltic Dry Index by using an artificial neural network approach
    Sahin, Bekir
    Gurgen, Samet
    Unver, Bedir
    Altin, Ismail
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2018, 26 (03) : 1673 - 1684
  • [23] Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models
    Zare, A. K.
    Bayat, V. M.
    Daneshkare, A. P.
    INTERNATIONAL AGROPHYSICS, 2011, 25 (02) : 187 - 192
  • [24] Groundwater level prediction using hybrid artificial neural network with genetic algorithm
    Supreetha, B.S.
    Prabhakar Nayak, K.
    Narayan Shenoy, K.
    International Journal of Earth Sciences and Engineering, 2015, 8 (06): : 2609 - 2615
  • [25] Modelling groundwater level fluctuations in urban areas using artificial neural network
    Malik, Ashish
    Bhagwat, Anjali
    GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, 2021, 12
  • [26] A wavelet neural network conjunction model for groundwater level forecasting
    Adamowski, Jan
    Chan, Hiu Fung
    JOURNAL OF HYDROLOGY, 2011, 407 (1-4) : 28 - 40
  • [27] Particle Swarm Optimization Based Artificial Neural Network Model for Forecasting Groundwater Level in UDUPI District
    Balavalikar, Supreetha
    Nayak, Prabhakar
    Shenoy, Narayan
    Nayak, Krishnamurthy
    INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, MATERIALS AND APPLIED SCIENCE, 2018, 1952
  • [28] Weather Forecasting Using Artificial Neural Network
    Fente, Dires Negash
    Singh, Dheeraj Kumar
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1757 - 1761
  • [29] Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization
    Tapoglou, Evdokia
    Trichakis, Ioannis C.
    Dokou, Zoi
    Nikolos, Ioannis K.
    Karatzas, George P.
    HYDROLOGICAL SCIENCES JOURNAL, 2014, 59 (06) : 1225 - 1239
  • [30] Artificial neural network model as a potential alternative for groundwater salinity forecasting
    Banerjee, Pallavi
    Singh, V. S.
    Chatttopadhyay, Kausik
    Chandra, P. C.
    Singh, Bhoop
    JOURNAL OF HYDROLOGY, 2011, 398 (3-4) : 212 - 220