The architecture of eukaryotic translation

被引:39
|
作者
Chu, Dominique [1 ]
von der Haar, Tobias [2 ]
机构
[1] Univ Kent, Sch Comp, Canterbury CT2 7NF, Kent, England
[2] Univ Kent, Sch Biosci, Canterbury CT2 7NJ, Kent, England
关键词
BUDDING YEAST TRANSCRIPTOME; TRANSFER-RNA COMPETITION; MESSENGER-RNA; SACCHAROMYCES-CEREVISIAE; PROTEIN-SYNTHESIS; GENE-EXPRESSION; STEADY-STATES; RIBOSOMAL-RNA; DYNAMICS; GENOME;
D O I
10.1093/nar/gks825
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translation in baker's yeast involves the coordinated interaction of 200 000 ribosomes, 3 000 000 tRNAs and between 15 000 and 60 000 mRNAs. It is currently unknown whether this specific constellation of components has particular relevance for the requirements of the yeast proteome, or whether this is simply a frozen accident. Our study uses a computational simulation model of the genome-wide translational apparatus of yeast to explore quantitatively which combinations of mRNAs, ribosomes and tRNAs can produce viable proteomes. Surprisingly, we find that if we only consider total translational activity over time without regard to composition of the proteome, then there are many and widely differing combinations that can generate equivalent synthesis yields. In contrast, translational activity required for generating specific proteomes can only be achieved within a much more constrained parameter space. Furthermore, we find that strongly ribosome limited regimes are optimal for cells in that they are resource efficient and simplify the dynamics of the system.
引用
收藏
页码:10098 / 10106
页数:9
相关论文
共 50 条
  • [31] Molecular architecture of a eukaryotic DNA transposase
    Alison B Hickman
    Zhanita N Perez
    Liqin Zhou
    Primrose Musingarimi
    Rodolfo Ghirlando
    Jenny E Hinshaw
    Nancy L Craig
    Fred Dyda
    Nature Structural & Molecular Biology, 2005, 12 : 715 - 721
  • [32] Molecular Architecture and Assembly of the Eukaryotic Proteasome
    Tomko, Robert J., Jr.
    Hochstrasser, Mark
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 82, 2013, 82 : 415 - 445
  • [33] Molecular architecture of a eukaryotic DNA transposase
    Hickman, AB
    Perez, ZN
    Zhou, LQ
    Musingarimi, P
    Ghirlando, R
    Hinshaw, JE
    Craig, NL
    Dyda, F
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (08) : 715 - 721
  • [34] INHIBITORS OF TRANSLATION TARGETING EUKARYOTIC TRANSLATION INITIATION FACTOR 4A
    Cencic, Regina
    Galicia-Vazquez, Gabriela
    Pelletier, Jerry
    RNA HELICASES, 2012, 511 : 437 - 461
  • [35] Direct tracking of eukaryotic translation termination dynamics
    Lawson, Michael R.
    Lessen, Laura
    Wang, Jinfan
    Green, Rachel
    Puglisi, Joseph D.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 202A - 202A
  • [36] Power of Yeast for Analysis of Eukaryotic Translation Initiation
    Altmann, Michael
    Linder, Patrick
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (42) : 31907 - 31912
  • [37] Targeting Eukaryotic mRNA Translation byLegionella pneumophila
    Belyi, Yury
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7
  • [38] Alternative Mechanisms to Initiate Translation in Eukaryotic mRNAs
    Martinez-Salas, Encarnacion
    Pineiro, David
    Fernandez, Noemi
    COMPARATIVE AND FUNCTIONAL GENOMICS, 2012,
  • [39] Dynamics of Eukaryotic mRNA Structure during Translation
    Biziaev, N. S.
    Egorova, T., V
    Alkalaeva, E. Z.
    MOLECULAR BIOLOGY, 2022, 56 (03) : 382 - 394
  • [40] Suppression of eukaryotic translation termination by selected RNAs
    Carnes, J
    Frolova, L
    Zinnen, S
    Drugeon, G
    Phillippe, M
    Justesen, J
    Haenni, AL
    Leinwand, L
    Kisselev, LL
    Yarus, M
    RNA, 2000, 6 (10) : 1468 - 1479