Alloy design for high-entropy alloys based on Pettifor map for binary compounds with 1:1 stoichiometry

被引:12
|
作者
Takeuchi, A. [1 ]
Amiya, K. [1 ]
Wada, T. [1 ]
Yubuta, K. [1 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
基金
日本学术振兴会;
关键词
High-entropy alloys; Alloy design; Phase stability; Prediction; Microstructure; ELEMENTS;
D O I
10.1016/j.intermet.2015.06.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pettifor map for binary compounds with 1:1 stoichiometry was utilized as an alloy design for highentropy alloys (HEAs) with exact or near equi-atomicity in multicomponent systems. Experiments started with selecting GuGd binary compound with CsCI structure from Pettifor map, followed by its extensions by selecting the binary compounds with the same CsCI structure to CuDyGdTbY equi-atomic quinary alloy and to Cu4GdTbDyY and Ag4GdTbDyY quinary alloys and Cu2Ag2GdTbDyY senary alloy in sequence. X-ray diffraction revealed that CuDyGdTbY alloy was formed into a HEA with mixture of bcc, fcc and hcp structures, whereas the Cu2Ag2GdTbDyY HEA was a single CsCI phase. The results suggest a potential of Pettifor map for the development of HEAs by utilizing its information of crystallographic structures. The further analysis was performed for composition diagrams of multicomponent systems corresponding to simplices in a high dimensional space. The present results revealed that a strategy of equi-mole of compounds instead of conventional equi-atomicity also works for the development of HEAs. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:56 / 66
页数:11
相关论文
共 50 条
  • [21] A map of single-phase high-entropy alloys
    Chen, Wei
    Hilhorst, Antoine
    Bokas, Georgios
    Gorsse, Stephane
    Jacques, Pascal J.
    Hautier, Geoffroy
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [22] Atomic Design of High-Entropy Alloys for Electrocatalysis
    Liu, Junlin
    Zhang, Yile
    Ding, Yiran
    Zeng, Mengqi
    Fu, Lei
    ACS MATERIALS LETTERS, 2024, 6 (07): : 2642 - 2659
  • [23] Design of CrxFe1-xMnCoNiGeSi high-entropy alloy with large barocaloric effect
    Guo, Yong
    Gong, Yuanyuan
    Zhang, Tingting
    Zhang, Zhishuo
    Chen, Bin
    Chen, Fenghua
    Jiang, Zhengyi
    Xu, Feng
    APPLIED PHYSICS LETTERS, 2024, 124 (06)
  • [24] Thermodynamic design of high-entropy refractory alloys
    Melnick, A. B.
    Soolshenko, V. K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 694 : 223 - 227
  • [25] Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects
    Wang Yihan
    Yuan Yuan
    Yu Jiabin
    Wu Honghui
    Wu Yuan
    Jiang Suihe
    Liu Xiongjun
    Wang Hui
    Lu Zhaoping
    ACTA METALLURGICA SINICA, 2021, 57 (04) : 403 - 412
  • [26] Alloy Designs for High-Entropy Alloys, Bulk Metallic Glasses and High-Entropy Bulk Metallic Glasses
    Takeuchi, Akira
    JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 2015, 79 (04) : 157 - 168
  • [27] Role of vacancies in structural thermalization of binary and high-entropy alloys
    Kristoffersen, Henrik H.
    Pedersen, Jack K.
    Rossmeisl, Jan
    ACTA MATERIALIA, 2023, 261
  • [28] Design of L12-type high-entropy intermetallic compounds from L12-strengthened high-entropy alloys
    Huang, Ming
    Wu, Siyi
    Xu, Shiyu
    Cheng, Qiangqiang
    Hong, Lin
    Qin, Yuan
    Yang, Sen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [29] Single-phase high-entropy intermetallic compounds(HEICs): bridging high-entropy alloys and ceramics
    Naixie Zhou
    Sicong Jiang
    Timothy Huang
    Mingde Qin
    Tao Hu
    Jian Luo
    Science Bulletin, 2019, 64 (12) : 856 - 864
  • [30] Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics
    Zhou, Naixie
    Jiang, Sicong
    Huang, Timothy
    Qin, Mingde
    Hu, Tao
    Luo, Jian
    SCIENCE BULLETIN, 2019, 64 (12) : 856 - 864