Weakly-Supervised TV Logo Detection

被引:0
|
作者
Zhang, Yueying [1 ,2 ]
Cao, Xiaochun [1 ,2 ]
Wu, Dao [1 ,2 ]
Li, Tao [3 ]
机构
[1] Chinese Acad Sci, State Key Lab Informat Secur, Inst Informat Engn, Beijing 100093, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100049, Peoples R China
[3] Sichuan Univ, Coll Cybersecur, Chengdu 610207, Sichuan, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
TV logo detection; Weakly-supervised; Faster RCNN; RPN; Fast RCNN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a TV logo detection system is proposed based on the deep learning architecture for the specific TV logo detection task. Training a robust object detector typically requires a large amount of manually annotated data, which is time-consuming. To reduce the cost, we construct a TV logo detection system in a weakly-supervised framework, which is accomplished by a TV logo localization network based on Region Proposal Network (RPN) and a classification network based on Fast RCNN. Based on observed priors of a typical TV logo in pictures and video frames, data preparation and processing are performed by carrying out keyframe extraction and data augmentation. Since we build the localization network based on RPN, only a few bounding box annotations are employed for training the localization network. Then the well-trained localization network can produce numerous positive and negative proposals. These proposals along with the logo class labels for classification network training are exploited to train the classification network. To generate reasonable anchor boxes, k-means clustering is utilized to infer the scales and aspect ratios. Besides, for efficient training and better generalization ability, hard example mining is also explored. Experimental results demonstrate that the proposed weakly-supervised TV logo detection system achieves superior performances compared to the baseline Faster RCNN approach, with a mAP as about 92% in our newly proposed dataset.
引用
收藏
页码:1031 / 1036
页数:6
相关论文
共 50 条
  • [31] Deep Learning for Weakly-Supervised Object Detection and Localization: A Survey
    Shao, Feifei
    Chen, Long
    Shao, Jian
    Ji, Wei
    Xiao, Shaoning
    Ye, Lu
    Zhuang, Yueting
    Xiao, Jun
    NEUROCOMPUTING, 2022, 496 : 192 - 207
  • [32] Weakly-Supervised Video Anomaly Detection with MTDA-Net
    Wu, Huixin
    Yang, Mengfan
    Wei, Fupeng
    Shi, Ge
    Jiang, Wei
    Qiao, Yaqiong
    Dong, Hangcheng
    ELECTRONICS, 2023, 12 (22)
  • [33] Weakly-Supervised Salient Object Detection Using Point Supervison
    Gao, Shuyong
    Zhang, Wei
    Wang, Yan
    Guo, Qianyu
    Zhang, Chenglong
    He, Yangji
    Zhang, Wenqiang
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 670 - 678
  • [34] Discriminative action tubelet detector for weakly-supervised action detection
    Lee, Jiyoung
    Kim, Seungryong
    Kim, Sunok
    Sohn, Kwanghoon
    PATTERN RECOGNITION, 2024, 155
  • [35] Weakly-Supervised Video Anomaly Detection With Snippet Anomalous Attention
    Fan, Yidan
    Yu, Yongxin
    Lu, Wenhuan
    Han, Yahong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5480 - 5492
  • [36] Weakly-Supervised Salient Object Detection with Saliency Bounding Boxes
    Liu, Yuxuan
    Wang, Pengjie
    Cao, Ying
    Liang, Zijian
    Lau, Rynson W. H.
    IEEE Transactions on Image Processing, 2021, 30 : 4423 - 4435
  • [37] Weakly-supervised Vehicle Detection and Classification by Convolutional Neural Network
    Jiang, Changyu
    Zhang, Bailing
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 570 - 575
  • [38] Weakly-Supervised Learning With Complementary Heatmap for Retinal Disease Detection
    Meng, Qier
    Liao, Liang
    Satoh, Shin'ichi
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (08) : 2067 - 2078
  • [39] Weakly-Supervised Classification with Mixture Models for Cervical Cancer Detection
    Bouveyron, Charles
    BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 1021 - 1028
  • [40] Weakly-supervised Learning for Parkinson's Disease Tremor Detection
    Zhang, Ada
    Cebulla, Alexander
    Panev, Stanislav
    Hodgins, Jessica
    De la Torre, Fernando
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 143 - 147