Comparative study of n-type AlGaN grown on sapphire by using a superlattice layer and a low-temperature AlN interlayer

被引:16
|
作者
Xi, Y. A.
Chen, K. X.
Mont, F.
Kim, J. K.
Schubert, E. F. [1 ]
Liu, W.
Li, X.
Smart, J. A.
机构
[1] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, 110 8th St, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Future Chips Constellat, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[4] Crystal IS Inc, Green Island, NY 12183 USA
基金
美国国家科学基金会;
关键词
metalorganic vapor phase epitaxy; AlGaN; nitride; light emitting diode;
D O I
10.1016/j.jcrysgro.2006.10.253
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Si-doped Al0.3Ga0.7N grown on (0 0 0 I)-oriented sapphire is optimized by using a superlattice (SL) layer. Atomic force microscopy (AFM), high-resolution X-ray diffraction (HRXRD), secondary ion mass spectrometry (SIMS), and Hall effect measurements show that n-type Al0.3Ga0.7N grown on a SL layer gives high-quality crystalline and electrical properties. A 1.8-mu m-thick crack-free n-type Al0.3Ga0.7N layer is demonstrated with a doping concentration of 3 x 1018CM-3, an excellent mobility of 80 cm(2)/(V s), and an RMS roughness of 0.40 nm. Using the SL layer also results in the absence of hexagonal hillocks on the AlGaN surface, which are indicative of a high defect density. The study of an identical n-type Al0.3Ga0.7N layer grown on a low-temperature AIN interlayer shows a lower carrier concentration, mobility, and crystalline quality. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 62
页数:4
相关论文
共 50 条
  • [21] A low-temperature AlN interlayer to improve the quality of GaN epitaxial films grown on Si substrates
    Lin, Yunhao
    Yang, Meijuan
    Wang, Wenliang
    Lin, Zhiting
    Li, Guoqiang
    CRYSTENGCOMM, 2016, 18 (46): : 8926 - 8932
  • [22] Reduction of tensile stress in GaN grown on Si(111) by inserting a low-temperature AlN interlayer
    Zhang, BS
    Wu, M
    Liu, JP
    Chen, J
    Zhu, JJ
    Shen, XM
    Feng, G
    Zhao, DG
    Wang, YT
    Yang, H
    Boyd, AR
    JOURNAL OF CRYSTAL GROWTH, 2004, 270 (3-4) : 316 - 321
  • [23] LOW-TEMPERATURE GALVANOMAGNETIC EFFECTS IN N-TYPE PBS
    FINLAYSON, DM
    JOHNSON, IA
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1975, 71 (01): : 395 - 400
  • [24] LOW-TEMPERATURE MAGNETORESISTANCE IN DEGENERATE N-TYPE SI
    KHOSLA, RP
    FISCHER, JR
    PHYSICAL REVIEW B, 1972, 6 (10): : 4073 - &
  • [25] LOW-TEMPERATURE THERMOMAGNETIC EFFECTS IN N-TYPE PBS
    CHAN, YC
    FINLAYSON, DM
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1972, 50 (01): : 281 - +
  • [26] LOW-TEMPERATURE THERMAL RESISTANCE OF N-TYPE GERMANIUM
    KEYES, RW
    PHYSICAL REVIEW, 1961, 122 (04): : 1171 - &
  • [27] LOW-TEMPERATURE NONILLUMINATED ANODIZATION OF N-TYPE SILICON
    MONTERO, I
    GOMEZSANROMAN, RJ
    ALBELLA, JM
    CLIMENT, A
    PERRIERE, J
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1990, 8 (03): : 544 - 550
  • [28] LOW-TEMPERATURE PIEZOELECTRIC STIFFENING IN N-TYPE GAAS
    BOYLE, WF
    SLADEK, RJ
    IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1972, SU19 (03): : 408 - &
  • [29] LOW-TEMPERATURE IMPURITY CONDUCTION IN N-TYPE SILICON
    ATKINS, KR
    DONOVAN, R
    WALMSLEY, RH
    PHYSICAL REVIEW, 1960, 118 (02): : 411 - 414
  • [30] High-Temperature Performance of AlN MESFETs With Epitaxially Grown n-Type AlN Channel Layers
    Hiroki, Masanobu
    Taniyasu, Yoshitaka
    Kumakura, Kazuhide
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (03) : 350 - 353