Detailed modeling of three-dimensional chemical vapor deposition

被引:11
|
作者
Ern, A
Giovangigli, V
Smooke, MD
机构
[1] YALE UNIV,DEPT MECH ENGN,NEW HAVEN,CT 06520
[2] ECOLE POLYTECH,CNRS,CMAP,F-91128 PALAISEAU,FRANCE
[3] ECOLE NATL PONTS & CHAUSSEES,CERMICS,F-93167 NOISY LE GRAND,FRANCE
关键词
chemical vapor deposition; gallium arsenide; carbon doping; multicomponent transport; gas-phase chemistry; surface chemistry;
D O I
10.1016/S0022-0248(97)00311-4
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
In this paper we investigate computationally a metalorganic chemical vapor deposition reactor. Our model combines a three-dimensional solution of the coupled Navier-Stokes/energy equations in a vorticity-velocity form, new and accurate multicomponent transport algorithms, and detailed finite rate chemistry in the gas phase and on the crystal surface. We apply a modified Newton method along with efficient Jacobian evaluation and linear algebra procedures in order to obtain a numerical solution. The present study focuses primarily on film uniformity and carbon incorporation levels. Our numerical results show the critical importance of transport modeling for an accurate description of the growth process. Furthermore, three growth regimes arise as a function of susceptor temperature: a kinetics-controlled regime at low temperatures, a diffusion-controlled regime at intermediate temperatures, and a desorption-controlled regime at high temperatures. These results are further supported by a sensitivity analysis with respect to both gas phase and surface chemistry.
引用
收藏
页码:670 / 679
页数:10
相关论文
共 50 条
  • [21] Laser-assisted chemical vapor deposition to directly write three-dimensional microstructures
    Han, SI
    Jeong, SH
    JOURNAL OF LASER APPLICATIONS, 2004, 16 (03) : 154 - 159
  • [22] Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition
    Koziol, K
    Shaffer, M
    Windle, A
    ADVANCED MATERIALS, 2005, 17 (06) : 760 - +
  • [23] Three-dimensional deposition of TiN film using low frequency (50 Hz) plasma chemical vapor deposition
    Shimozuma, M
    Date, H
    Iwasaki, T
    Tagashira, H
    Yoshino, M
    Yoshida, K
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1997, 15 (04): : 1897 - 1901
  • [24] A numerical model for simulating axisymmetric rod growth in three-dimensional laser chemical vapor deposition
    Dai, W
    Nassar, R
    Zhang, C
    Shabanian, S
    Maxwell, J
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1999, 36 (03) : 251 - 262
  • [25] Plasma enhanced chemical vapor deposition of SiN-films for passivation of three-dimensional substrates
    Orfert, M
    Richter, K
    SURFACE & COATINGS TECHNOLOGY, 1999, 116 : 622 - 628
  • [26] Two- and three-dimensional simulation of chemical vapor deposition SiC epitaxial growth processes
    Koshka, Y
    Melnychuk, G
    Mazzola, MS
    JOURNAL OF ELECTRONIC MATERIALS, 2003, 32 (05) : 448 - 451
  • [27] Three-dimensional nanoimprint mold fabrication by focused-ion-beam chemical vapor deposition
    Morita, T
    Watanabe, K
    Kometani, R
    Kanda, K
    Haruyama, Y
    Kaito, T
    Fujita, JI
    Ishida, M
    Ochiai, Y
    Tajima, T
    Matsui, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2003, 42 (6B): : 3874 - 3876
  • [28] Computation of three-dimensional flow and thermal fields in a model horizontal chemical vapor deposition reactor
    Cheng, T. S.
    Hsiao, M. C.
    JOURNAL OF CRYSTAL GROWTH, 2006, 293 (02) : 475 - 484
  • [29] Three-dimensional rotor fabrication by focused-ion-beam chemical-vapor-deposition
    Igaki, Jun-ya
    Kometani, Reo
    Nakamatsu, Ken-ichiro
    Kanda, Kazuhiro
    Haruyama, Yuichi
    Ochiai, Yukinori
    Fujita, Jun-ichi
    Kaito, Takashi
    Matsui, Shinji
    MICROELECTRONIC ENGINEERING, 2006, 83 (4-9) : 1221 - 1224
  • [30] Two- and three-dimensional simulation of chemical vapor deposition SiC epitaxial growth processes
    Y. Koshka
    G. Melnychuk
    M. S. Mazzola
    Journal of Electronic Materials, 2003, 32 : 448 - 451