Synthesis of maximum margin and multiview learning using unlabeled data

被引:19
|
作者
Szedmak, Sandor [1 ]
Shawe-Taylor, John
机构
[1] Univ Southampton, ISIS Grp, Southampton SO17 1BJ, Hants, England
[2] Univ Helsinki, Dept Comp Sci, SF-00510 Helsinki, Finland
[3] UCL, Dept Comp Sci, London WC1E 6BT, England
关键词
semi-supervised learning; maximum margin; support vector machine; Rademacher complexity; multiview learning;
D O I
10.1016/j.neucom.2006.11.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we show that the semi-supervised learning with two input sources can be transformed into a maximum margin problem to be similar to a binary support vector machine. Our formulation exploits the unlabeled data to reduce the complexity of the class of the learning functions. In order to measure how the complexity is decreased we use the Rademacher complexity theory. The corresponding optimization problem is convex and it is efficiently solvable for large-scale applications as well. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1254 / 1264
页数:11
相关论文
共 50 条
  • [21] Learning Maximum Margin Channel Decoders
    Tsvieli, Amit
    Weinberger, Nir
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (06) : 3597 - 3626
  • [22] Maximum margin partial label learning
    Yu, Fei
    Zhang, Min-Ling
    [J]. MACHINE LEARNING, 2017, 106 (04) : 573 - 593
  • [23] Recursive Maximum Margin Active Learning
    Gui, Shilin
    Jiao, Yuanyuan
    Tao, Hong
    Hou, Chenping
    [J]. IEEE ACCESS, 2019, 7 : 59933 - 59943
  • [24] Don't pay for validation : Detecting drifts from unlabeled data using margin density
    Sethi, Tegjyot Singh
    Kantardzic, Mehmed
    [J]. INNS CONFERENCE ON BIG DATA 2015 PROGRAM, 2015, 53 : 103 - 112
  • [25] UnTran: Recognizing Unseen Activities with Unlabeled data using Transfer Learning
    Khan, Md Abdullah Al Hafiz
    Roy, Nirmalya
    [J]. 2018 IEEE/ACM THIRD INTERNATIONAL CONFERENCE ON INTERNET-OF-THINGS DESIGN AND IMPLEMENTATION (IOTDI 2020), 2018, : 37 - 47
  • [26] Exploiting Unlabeled Data in Smart Cities using Federated Edge Learning
    Albaseer, Abdullatif
    Ciftler, Bekir Sait
    Abdallah, Mohamed
    Al-Fuqaha, Ala
    [J]. 2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 1666 - 1671
  • [27] A machine learning approach to identifying database sessions using unlabeled data
    Yao, QS
    Huang, XJ
    An, AJ
    [J]. DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2005, 3589 : 254 - 264
  • [28] Optimizing Kernel Functions Using Transfer Learning from Unlabeled Data
    Abbasnejad, M. Ehsan
    Ramachandram, Dhanesh
    Mandava, Rajeswari
    [J]. 2009 SECOND INTERNATIONAL CONFERENCE ON MACHINE VISION, PROCEEDINGS, ( ICMV 2009), 2009, : 111 - 117
  • [29] Multiple Admissibility in Language Learning: Judging Grammaticality Using Unlabeled Data
    Katinskai, Anisia
    Ivanova, Sardana
    Yangarber, Roman
    [J]. 7TH WORKSHOP ON BALTO-SLAVIC NATURAL LANGUAGE PROCESSING (BSNLP'2019), 2019, : 12 - 22
  • [30] Web Page Classification Using Relational Learning Algorithm and Unlabeled Data
    Li, Yanjuan
    Guo, Maozu
    [J]. JOURNAL OF COMPUTERS, 2011, 6 (03) : 474 - 479