Synthesis of maximum margin and multiview learning using unlabeled data

被引:19
|
作者
Szedmak, Sandor [1 ]
Shawe-Taylor, John
机构
[1] Univ Southampton, ISIS Grp, Southampton SO17 1BJ, Hants, England
[2] Univ Helsinki, Dept Comp Sci, SF-00510 Helsinki, Finland
[3] UCL, Dept Comp Sci, London WC1E 6BT, England
关键词
semi-supervised learning; maximum margin; support vector machine; Rademacher complexity; multiview learning;
D O I
10.1016/j.neucom.2006.11.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we show that the semi-supervised learning with two input sources can be transformed into a maximum margin problem to be similar to a binary support vector machine. Our formulation exploits the unlabeled data to reduce the complexity of the class of the learning functions. In order to measure how the complexity is decreased we use the Rademacher complexity theory. The corresponding optimization problem is convex and it is efficiently solvable for large-scale applications as well. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1254 / 1264
页数:11
相关论文
共 50 条
  • [1] Large Margin Distribution Learning with Cost Interval and Unlabeled Data
    Zhou, Yu-Hang
    Zhou, Zhi-Hua
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (07) : 1749 - 1763
  • [2] Using unlabeled data for supervised learning
    Towell, G
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 8: PROCEEDINGS OF THE 1995 CONFERENCE, 1996, 8 : 647 - 653
  • [3] Large-Margin Predictive Latent Subspace Learning for Multiview Data Analysis
    Chen, Ning
    Zhu, Jun
    Sun, Fuchun
    Xing, Eric Poe
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (12) : 2365 - 2378
  • [4] Multiview learning with twin parametric margin SVM
    Quadir, A.
    Tanveer, M.
    [J]. NEURAL NETWORKS, 2024, 180
  • [5] Maximum Margin Learning with Incomplete Data: Learning Networks instead of Tables
    Szedmak, Sandor
    Ni, Yizhao
    Gunn, Steve R.
    [J]. PROCEEDINGS OF THE FIRST WORKSHOP ON APPLICATIONS OF PATTERN ANALYSIS, 2010, 11 : 96 - 102
  • [6] Maximum Margin Projection Subspace Learning for Visual Data Analysis
    Nikitidis, Symeon
    Tefas, Anastasios
    Pitas, Ioannis
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (10) : 4413 - 4425
  • [7] Maximum margin semi-supervised learning with irrelevant data
    Yang, Haiqin
    Huang, Kaizhu
    King, Irwin
    Lyu, Michael R.
    [J]. NEURAL NETWORKS, 2015, 70 : 90 - 102
  • [8] Linear Maximum Margin Classifier for Learning from Uncertain Data
    Tzelepis, Christos
    Mezaris, Vasileios
    Patras, Ioannis
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (12) : 2948 - 2962
  • [9] Learning to Imagine: Diversify Memory for Incremental Learning using Unlabeled Data
    Tang, Yu-Ming
    Peng, Yi-Xing
    Zheng, Wei-Shi
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9539 - 9548
  • [10] Maximum Margin Transfer Learning
    Su, Bai
    Shen, Yi-Dong
    [J]. WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 957 - 960