Predictive Analysis and Prognostic Approach of Diabetes Prediction with Machine Learning Techniques

被引:4
|
作者
Omana, J. [1 ]
Moorthi, M. [2 ]
机构
[1] Anna Univ, Prathyusha Engn Coll, Dept Comp Sci & Engn, Thiruvallur, India
[2] Saveetha Engn Coll, Dept Elect & Commun Engn, Chennai, Tamil Nadu, India
关键词
Prognostic modelling; Prediction; Automated modelling; Type 2 diabetes mellitus; Sparse data handling; Approximation; Machine learning algorithm; CLASSIFICATION; DISEASE;
D O I
10.1007/s11277-021-08274-w
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Medical experts indulge in numerous strategies for efficient and predictive measures to model the health status of patients and formulate the patterns that are formed in test results. Most patients would dream of their betterments of their health conditions and thus preventing the progression of any disease. When diabetics is considered in the model, or highly intervening methodology would be required for pre-diabetic individuals. Hidden Markov models have been modified into variant models to derive predictions that accurately produce expected results by investigating patterns of clinical observations from a detailed sample of patient's dataset. There are yet unanswered and concerning challenges to derive an absolute model for predicting diabetes. The datasets from which the patterns are derived from, still holds levels of in completeness, irregularity and obvious clinical interventions during the diagnosis. The Electronic Medical Records are not furnished with all requisite information in all conditions and scenarios. Due to these irregularities prediction has become highly challenging and there is increase in misclassification rate. Newton's Divide Difference Method (NDDM) is a conventional model for filling the irregularity in electronic datasets through divided differences. The classical approach considers a polynomial approximation approach, thus leading to Runge Phenomenon. If the interval between data fields id higher, severity of finding the irregularities is even higher. By using this type of technique it helps in improving the accuracy thereby bringing in high level prediction without any error and misclassification. In this technique proposed, a novel approximation technique is implemented using the Euclidean distance parameter over the NDDM approximation to predict the outcomes or risk of Type 2 Diabetes Mellitus among patients. Real world entities in CPCSSN are considered for this study and proposed method is tested. The proposed method filled the irregularity in the data components of EMR with better approximations and the quality of prediction has improved significantly.
引用
下载
收藏
页码:465 / 478
页数:14
相关论文
共 50 条
  • [41] Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics
    Ota, Ryosaku
    Yamashita, Fumiyoshi
    JOURNAL OF CONTROLLED RELEASE, 2022, 352 : 961 - 969
  • [42] Machine Learning Techniques for Software Maintainability Prediction: Accuracy Analysis
    Sara Elmidaoui
    Laila Cheikhi
    Ali Idri
    Alain Abran
    Journal of Computer Science and Technology, 2020, 35 : 1147 - 1174
  • [43] Prediction and Analysis of Customer Complaints Using Machine Learning Techniques
    Alarifi, Ghadah
    Rahman, Mst Farjana
    Hossain, Md Shamim
    INTERNATIONAL JOURNAL OF E-BUSINESS RESEARCH, 2023, 19 (01)
  • [44] Software Defect Prediction Analysis Using Machine Learning Techniques
    Khalid, Aimen
    Badshah, Gran
    Ayub, Nasir
    Shiraz, Muhammad
    Ghouse, Mohamed
    SUSTAINABILITY, 2023, 15 (06)
  • [45] Functional group analysis and machine learning techniques for MIE prediction
    Kevadiya, Jhanvi
    Johnson, Colson
    Chaudhari, Purvali
    Mashuga, Chad, V
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2024, 89
  • [46] Comparative analysis of machine learning techniques for the prediction of DMPK parameters
    White, Zollie, III
    Lowe, Edward W., Jr.
    Meiler, Jens
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [47] Machine Learning Techniques for Software Maintainability Prediction: Accuracy Analysis
    Elmidaoui, Sara
    Cheikhi, Laila
    Idri, Ali
    Abran, Alain
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2020, 35 (05) : 1147 - 1174
  • [48] A Holistic Approach on Airfare Price Prediction Using Machine Learning Techniques
    Kalampokas, Theofanis
    Tziridis, Konstantinos
    Kalampokas, Nikolaos
    Nikolaou, Alexandros
    Vrochidou, Eleni
    Papakostas, George A.
    IEEE ACCESS, 2023, 11 : 46627 - 46643
  • [49] A new approach for the prediction of partition functions using machine learning techniques
    Desgranges, Caroline
    Delhommelle, Jerome
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (04):
  • [50] The machine learning techniques in the protein structure prediction: an approach from bioinformatics
    Santiesteban-Toca, Cosme E.
    Casanola-Martin, Gerardo M.
    Aguilar-Ruiz, Jesus S.
    AFINIDAD, 2014, 71 (567) : 219 - 227