Low-Temperature Growth of Graphene on a Semiconductor

被引:7
|
作者
Rost, Hakon, I [1 ]
Chellappan, Rajesh Kumar [1 ]
Strand, Frode S. [1 ]
Grubisic-Cabo, Antonija [2 ]
Reed, Benjamen P. [3 ]
Prieto, Mauricio J. [4 ]
Tanase, Liviu C. [4 ]
Caldas, Lucas de Souza [4 ]
Wongpinij, Thipusa [5 ]
Euaruksakul, Chanan [5 ]
Schmidt, Thomas [4 ]
Tadich, Anton [6 ]
Cowie, Bruce C. C. [6 ]
Li, Zheshen [7 ]
Cooil, Simon P. [3 ,8 ]
Wells, Justin W. [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Ctr Quantum Spintron, Dept Phys, NO-7491 Trondheim, Norway
[2] Monash Univ, Sch Phys & Astron, Clayton, Vic 3168, Australia
[3] Aberystwyth Univ, Dept Phys, Aberystwyth SY23 3BZ, Dyfed, Wales
[4] Max Planck Gesell, Dept Interface Sci, Fritz Haber Inst, D-14195 Berlin, Germany
[5] Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand
[6] Australian Synchrotron, Clayton, Vic 3168, Australia
[7] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[8] Univ Oslo UiO, Dept Phys, Semicond Phys, NO-0371 Oslo, Norway
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2021年 / 125卷 / 07期
关键词
Graphene;
D O I
10.1021/acs.jpcc.0c10870
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The industrial realization of graphene has so far been limited by challenges related to the quality, reproducibility, and high process temperatures required to manufacture graphene on suitable substrates. We demonstrate that epitaxial graphene can be grown on transition-metal-treated 6H-SiC(0001) surfaces, with an onset of graphitization starting around 450-500 degrees C. From the chemical reaction between SiC and thin films of Fe or Ru, sp(3) carbon is liberated from the SiC crystal and converted to sp(2) carbon at the surface. The quality of the graphene is demonstrated by using angle-resolved photoemission spectroscopy and low-energy electron diffraction. Furthermore, the orientation and placement of the graphene layers relative to the SiC substrate are verified by using angle-resolved absorption spectroscopy and energy-dependent photoelectron spectroscopy, respectively. With subsequent thermal treatments to higher temperatures, a steerable diffusion of the metal layers into the bulk SiC is achieved. The result is graphene supported on magnetic silicide or optionally, directly on semiconductor, at temperatures ideal for further large-scale processing into graphene-based device structures.
引用
收藏
页码:4243 / 4252
页数:10
相关论文
共 50 条
  • [21] LOW-TEMPERATURE AND THE GROWTH OF PLANTS
    POLLOCK, CJ
    EAGLES, CF
    PLANTS AND TEMPERATURE, 1988, 42 : 157 - 180
  • [22] Low-Temperature Graphene Growth by Forced Convection of Plasma-Excited Radicals
    Kim, Jaeho
    Sakakita, Hajime
    Itagaki, Hiromoto
    NANO LETTERS, 2019, 19 (02) : 739 - 746
  • [23] Low-Temperature and Rapid Growth of Large Single-Crystalline Graphene with Ethane
    Sun, Xiao
    Lin, Li
    Sun, Luzhao
    Zhang, Jincan
    Rui, Dingran
    Li, Jiayu
    Wang, Mingzhan
    Tan, Congwei
    Kang, Ning
    Wei, Di
    Xu, H. Q.
    Peng, Hailin
    Liu, Zhongfan
    SMALL, 2018, 14 (03)
  • [24] Low-Temperature in Situ Growth of Graphene on Metallic Substrates and Its Application in Anticorrosion
    Zhu, Minmin
    Du, Zehui
    Yin, Zongyou
    Zhou, Wenwen
    Liu, Zhengdong
    Tsang, Siu Hon
    Teo, Edwin Hang Tong
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (01) : 502 - 510
  • [25] Low Temperature Graphene Growth
    Kumar, S.
    McEvoy, N.
    Lutz, T.
    Keeley, G. P.
    Whiteside, N.
    Blau, W.
    Duesberg, G. S.
    GRAPHENE AND EMERGING MATERIALS FOR POST-CMOS APPLICATIONS, 2009, 19 (05): : 175 - +
  • [26] Low-temperature thermal conductivity in polycrystalline graphene
    Kolesnikov, D. V.
    Osipov, V. A.
    EPL, 2012, 100 (02)
  • [27] Ni2C surface carbide to catalyze low-temperature graphene growth
    Martinez-Gordillo, Rafael
    Varvenne, Celine
    Amara, Hakim
    Bichara, Christophe
    PHYSICAL REVIEW B, 2018, 97 (20)
  • [28] Growth of graphene nanowalls in low-temperature plasma: Experimental insight in initial growth and importance of wall conditioning
    Jagodar, Andrea
    Santhosh, Neelakandan M.
    Strunskus, Thomas
    von Wahl, Erik
    Petit, Agnes
    Lecas, Thomas
    Kosicek, Martin
    Cvelbar, Uros
    Berndt, Johannes
    Kovacevic, Eva
    APPLIED SURFACE SCIENCE, 2024, 643
  • [29] Low-temperature wafer-scale growth of MoS2-graphene heterostructures
    Kim, Hyeong-U
    Kim, Mansu
    Jin, Yinhua
    Hyeon, Yuhwan
    Kim, Ki Seok
    An, Byeong-Seon
    Yang, Cheol-Woong
    Kanade, Vinit
    Moonn, Ji-Yun
    Yeom, Geun Yong
    Whang, Dongmok
    Lee, Jae-Hyun
    Kim, Taesung
    APPLIED SURFACE SCIENCE, 2019, 470 : 129 - 134
  • [30] Low-temperature growth of graphene nanoplatelets by hot-wire chemical vapour deposition
    Anuar, Nur Afira binti
    Nor, Nurul Hidayah Mohamad
    Awang, Rozidawati binti
    Nakajima, Hideki
    Tunmee, Sarayut
    Tripathi, Manoj
    Dalton, Alan
    Goh, Boon Tong
    SURFACE & COATINGS TECHNOLOGY, 2021, 411