Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform

被引:110
|
作者
Taylor, R. J. [1 ,2 ]
Falconnet, D. [2 ]
Niemistoe, A. [1 ]
Ramsey, S. A. [1 ]
Prinz, S. [1 ]
Shmulevich, I. [1 ]
Galitski, T. [1 ]
Hansen, C. L. [2 ,3 ]
机构
[1] Inst Syst Biol, Seattle, WA 98103 USA
[2] Univ British Columbia, Ctr High Throughput Biol, Vancouver, BC V6T 1Z4, Canada
[3] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada
基金
芬兰科学院; 瑞士国家科学基金会; 美国国家卫生研究院;
关键词
yeast; systems biology; microscopy; live-cell imaging; SACCHAROMYCES-CEREVISIAE; PHEROMONE RESPONSE; GENE-EXPRESSION; YEAST DIFFERENTIATION; KINASE; PROTEIN; SPECIFICITY; PATHWAYS; ACTIVATION; ADAPTATION;
D O I
10.1073/pnas.0813416106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cells have evolved biomolecular networks that process and respond to changing chemical environments. Understanding how complex protein interactions give rise to emergent network properties requires time-resolved analysis of cellular response under a large number of genetic perturbations and chemical environments. To date, the lack of technologies for scalable cell analysis under well-controlled and time-varying conditions has made such global studies either impossible or impractical. To address this need, we have developed a high-throughput microfluidic imaging platform for single-cell studies of network response under hundreds of combined genetic perturbations and time-varying stimulant sequences. Our platform combines programmable on-chip mixing and perfusion with high-throughput image acquisition and processing to perform 256 simultaneous time-lapse live-cell imaging experiments. Nonadherent cells are captured in an array of 2,048 microfluidic cell traps to allow for the imaging of eight different genotypes over 12 h and in response to 32 unique sequences of stimulation, generating a total of 49,000 images per run. Using 12 devices, we carried out >3,000 live-cell imaging experiments to investigate the mating pheromone response in Saccharomyces cerevisiae under combined genetic perturbations and changing environmental conditions. Comprehensive analysis of 11 deletion mutants reveals both distinct thresholds for morphological switching and new dynamic phenotypes that are not observed in static conditions. For example, kss1 Delta, fus3 Delta, msg5 Delta, and ptp2 Delta mutants exhibit distinctive stimulus-frequency-dependent signaling phenotypes, implicating their role in filtering and network memory. The combination of parallel microfluidic control with high-throughput imaging provides a powerful tool for systems-level studies of single-cell decision making.
引用
下载
收藏
页码:3758 / 3763
页数:6
相关论文
共 50 条
  • [1] A Microfluidic Platform for High-throughput Single-cell Isolation and Culture
    Lin, Ching-Hui
    Chang, Hao-Chen
    Hsu, Chia-Hsien
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (112):
  • [2] High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics
    Kellogg, Ryan A.
    Gomez-Sjoeberg, Rafael
    Leyrat, Anne A.
    Tay, Savas
    NATURE PROTOCOLS, 2014, 9 (07) : 1713 - 1726
  • [3] High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics
    Ryan A Kellogg
    Rafael Gómez-Sjöberg
    Anne A Leyrat
    Savaş Tay
    Nature Protocols, 2014, 9 : 1713 - 1726
  • [4] High-throughput microfluidic single-cell trapping arrays for biomolecular and imaging analysis
    Li, Xuan
    Lee, Abraham P.
    MICROFLUIDICS IN CELL BIOLOGY, PT C: MICROFLUIDICS FOR CELLULAR AND SUBCELLULAR ANALYSIS, 2018, 148 : 35 - 50
  • [5] HIGH-THROUGHPUT SINGLE-CELL PATHOGEN DETECTION ON A DROPLET MICROFLUIDIC PLATFORM
    Rane, Tushar D.
    Zec, Helena
    Puleo, Chris
    Lee, Abraham P.
    Wang, Tza-Huei
    2011 IEEE 24TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2011, : 881 - 884
  • [6] Dynamic Microfluidic Cytometry for Single-Cell Cellomics: High-Throughput Probing Single-Cell-Resolution Signaling
    Chen, Peng
    Yan, Shuangqian
    Wang, Jie
    Guo, Yiran
    Dong, Yue
    Feng, Xiaojun
    Zeng, Xuemei
    Li, Yiwei
    Du, Wei
    Liu, Bi-Feng
    ANALYTICAL CHEMISTRY, 2019, 91 (02) : 1619 - 1626
  • [7] A high-throughput microfluidic single-cell screening platform capable of selective cell extraction
    Kim, Hyun Soo
    Devarenne, Timothy P.
    Han, Arum
    LAB ON A CHIP, 2015, 15 (11) : 2467 - 2475
  • [8] Spatiotemporal Microbial Single-Cell Analysis Using a High-Throughput Microfluidics Cultivation Platform
    Gruenberger, Alexander
    Probst, Christopher
    Helfrich, Stefan
    Nanda, Arun
    Stute, Birgit
    Wiechert, Wolfgang
    von Lieres, Eric
    Noeh, Katharina
    Frunzke, Julia
    Kohlheyer, Dietrich
    CYTOMETRY PART A, 2015, 87A (12) : 1101 - 1115
  • [9] Creation of a High-Throughput Microfluidic Platform for Single-Cell Transcriptome Sequencing of Cell-Cell Interactions
    Qi, Jingyu
    Zhu, Haibin
    Li, Yijian
    Guan, Xiangyu
    He, Ying
    Ren, Guanhua
    Guo, Qiang
    Liu, Longqi
    Gu, Ying
    Dong, Xuan
    Liu, Ya
    SMALL METHODS, 2023, 7 (11)
  • [10] Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips
    Yu, Linfen
    Huang, Huaiqing
    Dong, Xiuling
    Wu, Dapeng
    Qin, Jinhua
    Lin, Bingcheng
    ELECTROPHORESIS, 2008, 29 (24) : 5055 - 5060