Non-classical Stefan problem with nonlinear thermal coefficients and a Robin boundary condition<bold> </bold>

被引:11
|
作者
Briozzo, Adriana C. [1 ,2 ]
Fernanda Natale, Maria [2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[2] Univ Austral, Dept Matemat, FCE, Paraguay 1950,S2000FZF, Rosario, Santa Fe, Argentina
关键词
Stefan problem; Nonlinear thermal coefficient; Nonlinear integral equations; Non-classical heat equation; Convective boundary condition; Similarity solution<bold>; </bold>; HEAT-EQUATION; CONDUCTION;
D O I
10.1016/j.nonrwa.2019.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A non-classical one dimensional Stefan problem with thermal coefficients temperature dependent and a Robin type condition at fixed face x = 0 for a semi-infinite material is considered. The source function depends on the evolution the heat flux at the fixed face x = 0. Existence of a similarity type solution is obtained and the asymptotic behaviour of free boundary with respect to latent heat fusion is studied. The analysis of several particular cases are given. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
  • [1] Solutions of a non-classical Stefan problem with nonlinear thermal coefficients and a Robin boundary condition
    Bougoffa, Lazhar
    Khanfer, Ammar
    [J]. AIMS MATHEMATICS, 2021, 6 (06): : 6569 - 6579
  • [2] Determination of unknown thermal coefficients in a non-classical Stefan problem
    Bollati, Julieta
    Briozzo, Adriana C.
    Natale, Maria F.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [3] A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition
    Kumar, Abhishek
    Rajeev
    Gomez-Aguilar, J. F.
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (24) : 14649 - 14657
  • [4] A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition
    Abhishek Kumar
    J. F. Rajeev
    [J]. Journal of Thermal Analysis and Calorimetry, 2022, 147 : 14649 - 14657
  • [5] TWO STEFAN PROBLEMS FOR A NON-CLASSICAL HEAT EQUATION WITH NONLINEAR THERMAL COEFFICIENTS
    Briozzo, Adriana C.
    Fernanda Natale, Maria
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (11-12) : 1187 - 1202
  • [6] Non-classical two-phase Stefan problem with variable thermal coefficients
    Bollati, Julieta
    Briozzo, Adriana C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 534 (01)
  • [7] A Stefan problem for a non-classical heat equation with a convective condition
    Briozzo, Adriana C.
    Tarzia, Domingo A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) : 4051 - 4060
  • [8] Two-phase Stefan problem with nonlinear thermal coefficients and a convective boundary condition
    Briozzo, Adriana C.
    Fernanda Natale, Maria
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 58
  • [9] An exact solution to a Stefan problem with variable thermal conductivity and a Robin boundary condition
    Ceretani, Andrea N.
    Salva, Natalia N.
    Tarzia, Domingo A.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 40 : 243 - 259
  • [10] Numerical solution of an elliptic problem with a non-classical boundary condition
    Kolkovska, Natalia T.
    [J]. Numerical Methods and Applications, 2007, 4310 : 623 - 627