Non-classical two-phase Stefan problem with variable thermal coefficients

被引:0
|
作者
Bollati, Julieta [1 ,2 ]
Briozzo, Adriana C. [1 ,2 ]
机构
[1] Univ Austral, FCE, Dept Matemat, Paraguay 1950,S2000FZF, Rosario, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
关键词
Stefan problem; Diffusion -convection equation; Temperature -dependent thermal; coefficient; Fixed point; Similarity solution; Heat source; HEAT;
D O I
10.1016/j.jmaa.2024.128094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a one-dimensional two-phase Stefan problem governed by diffusionconvection equations with a Dirichlet boundary condition at the fixed face, variable thermal coefficients and particular heat sources. A similarity solution is obtained through the solution to a system of integral equations. Some particular cases are analyzed, providing also computational examples. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Determination of unknown thermal coefficients in a non-classical Stefan problem
    Bollati, Julieta
    Briozzo, Adriana C.
    Natale, Maria F.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [2] Exact solution for non-classical one-phase Stefan problem with variable thermal coefficients and two different heat source terms
    Julieta Bollati
    María F. Natale
    José A. Semitiel
    Domingo A. Tarzia
    [J]. Computational and Applied Mathematics, 2022, 41
  • [3] Exact solution for non-classical one-phase Stefan problem with variable thermal coefficients and two different heat source terms
    Bollati, Julieta
    Natale, Maria F.
    Semitiel, Jose A.
    Tarzia, Domingo A.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [4] TWO STEFAN PROBLEMS FOR A NON-CLASSICAL HEAT EQUATION WITH NONLINEAR THERMAL COEFFICIENTS
    Briozzo, Adriana C.
    Fernanda Natale, Maria
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (11-12) : 1187 - 1202
  • [5] Solutions of a non-classical Stefan problem with nonlinear thermal coefficients and a Robin boundary condition
    Bougoffa, Lazhar
    Khanfer, Ammar
    [J]. AIMS MATHEMATICS, 2021, 6 (06): : 6569 - 6579
  • [6] Classical two-phase Stefan problem for spheres
    McCue, Scott W.
    Wu, Bisheng
    Hill, James M.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2096): : 2055 - 2076
  • [7] Non-classical Stefan problem with nonlinear thermal coefficients and a Robin boundary condition<bold> </bold>
    Briozzo, Adriana C.
    Fernanda Natale, Maria
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 49 : 159 - 168
  • [8] Two-phase Stefan problem for generalized heat equation with nonlinear thermal coefficients
    Nauryz, Targyn
    Briozzo, Adriana C.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 74
  • [9] An explicit solution for an instantaneous two-phase Stefan problem with nonlinear thermal coefficients
    Briozzo, AC
    Tarzia, DA
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2002, 67 (03) : 249 - 261
  • [10] An explicit solution for an instantaneous two-phase Stefan problem with nonlinear thermal coefficients
    Briozzo, Adriana C.
    Tarzia, Domingo A.
    [J]. 1600, Oxford University Press (67):