Large Time Behavior of the Vlasov-Poisson-Boltzmann System

被引:0
|
作者
Li, Li [1 ]
Jin, Shuilin [2 ]
Yang, Li [3 ]
机构
[1] Harbin Inst Technol, Nat Sci Res Ctr, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150080, Peoples R China
[3] Harbin Finance Univ, Dept Fdn, Harbin 150030, Peoples R China
关键词
EQUATION; EQUILIBRIUM; TREND;
D O I
10.1155/2013/632903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate O(t(-infinity)), by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005). The improvement of the present paper is the removal of condition on parameter lambda as in the work of Li (2008).
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Global Existence of Classical Solutions to the Inelastic Vlasov-Poisson-Boltzmann System
    Choi, Sun-Ho
    Ha, Seung-Yeal
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2014, 156 (05) : 948 - 974
  • [42] Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System
    Li, Hailiang
    Wang, Yi
    Yang, Tong
    Zhong, Mingying
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (01) : 39 - 127
  • [43] Optimal Convergence Rates of Classical Solutions for Vlasov-Poisson-Boltzmann System
    Tong Yang
    Hongjun Yu
    [J]. Communications in Mathematical Physics, 2011, 301 : 319 - 355
  • [44] The Vlasov-Poisson-Boltzmann system for non-cutoff hard potentials
    QingHua Xiao
    LinJie Xiong
    HuiJiang Zhao
    [J]. Science China Mathematics, 2014, 57 : 515 - 540
  • [45] Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system
    Glassey, RT
    Strauss, WA
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 1999, 5 (03) : 457 - 472
  • [46] Global Strong Solutions of the Vlasov-Poisson-Boltzmann System in Bounded Domains
    Cao, Yunbai
    Kim, Chanwoo
    Lee, Donghyun
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 233 (03) : 1027 - 1130
  • [47] The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case
    Duan, Renjun
    Yang, Tong
    Zhao, Huijiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (12) : 6356 - 6386
  • [48] The Vlasov-Poisson-Boltzmann system for non-cutoff hard potentials
    Xiao QingHua
    Xiong LinJie
    Zhao HuiJiang
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (03) : 515 - 540
  • [49] THE VLASOV-POISSON-BOLTZMANN/LANDAU SYSTEM WITH POLYNOMIAL PERTURBATION NEAR MAXWELLIAN
    Cao, Chuqi
    Deng, Dingqun
    Li, Xingyu
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 820 - 876
  • [50] The Vlasov-Poisson-Boltzmann system for the whole range of cutoff soft potentials
    Xiao, Qinghua
    Xiong, Linjie
    Zhao, Huijiang
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (01) : 166 - 226