Large Time Behavior of the Vlasov-Poisson-Boltzmann System

被引:0
|
作者
Li, Li [1 ]
Jin, Shuilin [2 ]
Yang, Li [3 ]
机构
[1] Harbin Inst Technol, Nat Sci Res Ctr, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150080, Peoples R China
[3] Harbin Finance Univ, Dept Fdn, Harbin 150030, Peoples R China
关键词
EQUATION; EQUILIBRIUM; TREND;
D O I
10.1155/2013/632903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate O(t(-infinity)), by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005). The improvement of the present paper is the removal of condition on parameter lambda as in the work of Li (2008).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Time-asymptotic behavior of the Vlasov-Poisson-Boltzmann system near vacuum
    Chae, Myeongju
    Ha, Seung-Yeal
    Hwang, Hyung Ju
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (01) : 71 - 85
  • [2] On the Vlasov-Poisson-Boltzmann limit of the Vlasov-Maxwell-Boltzmann system
    Jiang, Ning
    Lei, Yuanjie
    Zhao, Huijiang
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (07)
  • [3] Cauchy problem for the Vlasov-Poisson-Boltzmann system
    Yang, Tong
    Yu, Hongjun
    Zhao, Huijiang
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 182 (03) : 415 - 470
  • [4] DIFFUSION LIMIT OF THE VLASOV-POISSON-BOLTZMANN SYSTEM
    Li, Hai-Liang
    Yang, Tong
    Zhong, Mingying
    [J]. KINETIC AND RELATED MODELS, 2021, 14 (02) : 211 - 255
  • [5] The Vlasov-Poisson-Boltzmann system near Maxwellians
    Guo, Y
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (09) : 1104 - 1135
  • [6] Spectrum Analysis for the Vlasov-Poisson-Boltzmann System
    Li, Hai-Liang
    Yang, Tong
    Zhong, Mingying
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (01) : 311 - 355
  • [7] The Vlasov-Poisson-Boltzmann system near vacuum
    Guo, Y
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (02) : 293 - 313
  • [8] THE VLASOV-POISSON-BOLTZMANN SYSTEM FOR SOFT POTENTIALS
    Duan, Renjun
    Yang, Tong
    Zhao, Huijiang
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (06): : 979 - 1028
  • [9] The Vlasov-Poisson-Boltzmann System without Angular Cutoff
    Duan, Renjun
    Liu, Shuangqian
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 324 (01) : 1 - 45
  • [10] UNIFORM STABILITY ESTIMATE FOR THE VLASOV-POISSON-BOLTZMANN SYSTEM
    Wang, Hao
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (02) : 657 - 680