Effect of Contamination towards Proton Exchange Membrane Fuel Cell Performance: A Review on Experimental and Numerical Works

被引:3
|
作者
Rodin, Muhammad bin Lebai [1 ]
Hassan, Saiful Hasmady bin Abu [1 ]
Zakaria, Zulfirdaus [2 ]
机构
[1] Univ Tenaga Nas, Coll Engn, Kajang, Malaysia
[2] Univ Tenaga Nas, Inst Sustainable Energy, Kajang, Malaysia
来源
JURNAL KEJURUTERAAN | 2020年 / 32卷 / 04期
关键词
Contamination; Fuel Cell; PEMFC; HYDROGEN-PRODUCTION; CO2; EMISSIONS; URBANIZATION; REFORMER; ENERGY;
D O I
10.17576/jkukm-2020-32(4)-03
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Proton exchange membrane fuel cell (PEMFC) is a well-known energy converter that has low greenhouse gases (GHG) emission, low operating temperatures, and high power density. PEMFC operates on hydrogen (H-2) as fuel, and oxygen (O-2) as oxidant. Inverse electrolysis occurs between the oxidant and the fuel. Then, water (H2O) forms as their by product. Practically, O-2 is supplied from the free air which contains not only oxygen but also other gases such as sulphur dioxide (SO2), and nitrogen oxides (NOx). Meanwhile, the H-2 fuel may contain traces of carbon monoxide (CO) as a result from its previous reforming process. This makes PEMFC susceptible to disruption from these particles. These contaminating gases from the free air occupy the reacting sites originally meant for O-2 and react with hydrogen ions instead of oxygen ions. While minute CO traces from the fuel occupies the reacting sites for H a and react with oxygen ions instead of hydrogen ions. Consecutively, the energy output from the PEMFC will be short from its expected numerical value hence a less efficient PEMFC. Hence, this paper reviews recent research on PEMFC under the impact of cathode and anode side contaminants via experimental and numerical works. It is found that CO has more effect to the cell compared to CO2. SO2 and CO contaminates the catalyst layer while NOx does not. In addition, PtRu/C shows more resistance to contamination compared to traditional Pt/C. This comparative review serves to find out potentials in improving PEMFC operation and solving its mitigation strategies.
引用
收藏
页码:21 / 27
页数:7
相关论文
共 50 条
  • [41] Review of proton exchange membrane fuel cell models
    Biyikoglu, A
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (11) : 1181 - 1212
  • [42] Experimental study on performance of a planar membrane humidifier for a proton exchange membrane fuel cell stack
    Hwang, Jenn Jiang
    Chang, Wei Ru
    Kao, Jenn Kun
    Wu, Wei
    JOURNAL OF POWER SOURCES, 2012, 215 : 69 - 76
  • [43] Analysis of proton exchange membrane fuel cell performance with a new generation of proton exchange membrane
    Hu, J
    Zhou, LR
    Zhu, Y
    Li, W
    Li, Z
    Niu, SP
    Lu, L
    Zhang, WX
    He, Y
    HYDROGEN ENERGY PROGRESS XIII, VOLS 1 AND 2, PROCEEDINGS, 2000, : 821 - 825
  • [44] Three-dimensional Numerical Simulation of Proton Exchange Membrane Fuel Cell: a Review
    Liu X.
    Jiang Y.
    Zhang X.
    Chen W.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (21): : 7352 - 7369
  • [45] Numerical analysis of the performance of proton exchange membrane fuel cell with longitudinal vortex generators
    Yang, Laishun
    Shi, Luhao
    Ding, Xian
    Cui, Weiwei
    Chang, Guozhang
    Wang, Cuiping
    Yue, Guangxi
    Li, Yongtong
    ENERGY REPORTS, 2022, 8 : 9481 - 9492
  • [46] Numerical optimization of proton exchange membrane fuel cell cathodes
    Secanell, M.
    Carnes, B.
    Suleman, A.
    Djilali, N.
    ELECTROCHIMICA ACTA, 2007, 52 (07) : 2668 - 2682
  • [47] The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell
    Yang, Daijun
    Ma, Jianxin
    Xu, Lin
    Wu, Minzhong
    Wang, Haijiang
    ELECTROCHIMICA ACTA, 2006, 51 (19) : 4039 - 4044
  • [48] Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell
    Wilberforce, Tabbi
    Ijaodola, O.
    Khatib, F. N.
    Ogungbemi, E. O.
    El Hassan, Zaki
    Thompson, James
    Olabi, A. G.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 688 : 1016 - 1035
  • [49] Transport phenomena effect on the performance of proton exchange membrane fuel cell (PEMFC)
    Haddad, Djamel
    Oulmi, Kafia
    Benmoussa, Hocine
    Aouachria, Zeroual
    Bourmada, Noureddine
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (20) : 8550 - 8556
  • [50] EFFECT OF OPERATING CONDITIONS ON PERFORMANCE OF A PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC)
    Youcef, Kerkoub
    Yasmina, Kerboua Ziari
    Ahmed, Benzaoui
    PROCEEDINGS OF CHT-12 - ICHMT INTERNATIONAL SYMPOSIUM ON ADVANCES IN COMPUTATIONAL HEAT TRANSFER, 2012, : 681 - 692