Mechanical Design of a Biomimetic Compliant Lower Limb Exoskeleton (BioComEx)

被引:10
|
作者
Baser, Ozgur [1 ]
Kizilhan, Hasbi [1 ]
Kilic, Ergin [1 ]
机构
[1] Suleyman Demirel Univ, Dept Mech Engn, Isparta, Turkey
关键词
Lower Limb Exoskeketon; Variable Stiffness Actuator; Series Elastic Actuator; ANKLE; ROBOT;
D O I
10.1109/ICARSC.2016.51
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Exoskeleton robots are wearable electromechanical structures interacting with human limbs. They are used for extending or replacing human performance in power augmentation and rehabilitation applications. The neuromuscular system of the human body provides flexible and stable movement with minimum energy consumption by means of the compliant actuation of human joints. Similar to human body, compliant actuation can be used to maximize the performance in exoskeleton robots. In the present study, we designed a new biomimetic compliant lower limb exoskeleton robot (BioComEx). Firstly, the current exoskeleton robot designs and biomechanics of the human body joints are reviewed. Then, according to the inferences of human joint biomechanics review, ankle joint is designed as variable stiffness actuator; knee and hip joints are designed as series elastic actuators. Kinetostatic analysis of these joint mechanisms is conducted, and finally the design details of each joint and complete exoskeleton structure adapted to a human dummy model are explained.
引用
下载
收藏
页码:60 / 65
页数:6
相关论文
共 50 条
  • [31] Structural Design and Analysis of Unpowered Exoskeleton for Lower Limb
    He, Zhenya
    Chen, Siqi
    Zhang, Xianmin
    Huang, Guojian
    Wang, Junming
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 237 - 242
  • [32] Design and control of hybrid actuation lower limb exoskeleton
    Aguilar-Sierra, Hipolito
    Yu, Wen
    Salazar, Sergio
    Lopez, Ricardo
    ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (06) : 1 - 13
  • [33] Design and analysis of lower limb exoskeleton with external payload
    Arunkumar, S.
    Mahesh, S.
    Rahul, M.
    Ganesh, N.
    Maheshwaran, K. J.
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2023, 17 (04): : 2055 - 2072
  • [34] Design and analysis of a lower limb assistive exoskeleton robot
    Li, Xiang
    Wang, Ke-Yi
    Yang, Zi-Yi
    TECHNOLOGY AND HEALTH CARE, 2024, 32 : S79 - S93
  • [35] Flexible Design of a Wearable Lower Limb Exoskeleton Robot
    Chen, Chunjie
    Zheng, Duan
    Peng, Ansi
    Wang, Can
    Wu, Xinyu
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 209 - 214
  • [36] Design and Structural Evaluation of a Lower Limb Passive Exoskeleton
    Hasan, Meraj
    Shakeel, Syed S.
    Malik, Fahad M.
    Khalid, Arslan
    Mir, Ahsan K.
    Ahmed, Salman
    2015 2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS, AND CONTROL TECHNOLOGY (I4CT), 2015,
  • [37] Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton
    Di Natali, Christian
    Poliero, Tommaso
    Sposito, Matteo
    Graf, Eveline
    Bauer, Christoph
    Pauli, Carole
    Bottenberg, Eliza
    De Eyto, Adam
    O'Sullivan, Leonard
    Hidalgo, Andres
    Scherly, Daniel
    Stadler, Konrad S.
    Caldwell, Darwin G.
    Ortiz, Jesus
    ROBOTICA, 2019, 37 (12) : 2014 - 2034
  • [38] Design and analysis of lower limb exoskeleton with external payload
    S. Arunkumar
    S. Mahesh
    M. Rahul
    N. Ganesh
    K. J. Maheshwaran
    International Journal on Interactive Design and Manufacturing (IJIDeM), 2023, 17 : 2055 - 2072
  • [39] Design and Control of an Exoskeleton in Rehabilitation Tasks for Lower Limb
    Velandia, Cristian
    Celedon, Hugo
    Tibaduiza, Diego Alexander
    Torres-Pinzon, Carlos
    Vitola, Jaime
    2016 XXI SYMPOSIUM ON SIGNAL PROCESSING, IMAGES AND ARTIFICIAL VISION (STSIVA), 2016,
  • [40] Biomimetic Viscoelastic Compliance Control for Self-Balancing Lower Limb Exoskeleton
    Tian, Dingkui
    Wang, Wanxiang
    Li, Feng
    Chen, Ziqiang
    He, Yong
    Li, Jinke
    Zhang, Li
    Wu, Xinyu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, : 13502 - 13512