Monodisperse bismuth nanoparticles decorated graphitic carbon nitride: Enhanced visible-light-response photocatalytic NO removal and reaction pathway

被引:171
|
作者
Jiang, Guangming [1 ]
Li, Xinwei [1 ]
Lan, Mengna [1 ]
Shen, Ting [1 ]
Lv, Xiaoshu [1 ]
Dong, Fan [1 ]
Zhang, Sen [2 ]
机构
[1] Chongqing Technol & Business Univ, Chongqing Key Lab Catalysis & Funct Organ Mol, Minist Educ, Engn Res Ctr Waste Oil Recovery Technol & Equipme, Chongqing 400067, Peoples R China
[2] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA
基金
中国国家自然科学基金;
关键词
Photocatalysis; Surface plasmon resonance; Heterojunction; Bismuth; NO removal; CO2; REDUCTION; METAL; SIZE; NANOSHEETS; GROWTH;
D O I
10.1016/j.apcatb.2017.01.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a facile approach to monodisperse bismuth nanoparticles (Bi NPs)-decorated graphitic carbon nitride (g-C3N4) photocatalyst, and its high efficiency in removing ppb-level NO in a continuous gas flow under visible light illumination. The photocatalyst is prepared via a size-controllable synthesis of Bi NPs in organic colloidal solution and a subsequent assembly of them on g-C3N4. The incorporation of Bi NPs can significantly enhance the photocatalytic activity of g-C3N4 via the construction of Bi-g-C3N4 heterojunction (heterojunction effect) and their surface plasmon resonance effect (SPR effect), both of which can promote the separation of photoexcited electron/hole in g-C3N4. Furthermore, tuning the size of Bi NPs allows the precise control of the heterojunction density and the intensity of SPR, and thus the successful identification and optimization of the contribution of each effect to the photocatalysis. 12 nm Bi NPs-decorated g-C3N4 can achieve an exceptional NO removal efficiency of 60.8%, much higher than those of smaller or larger Bi NPs decorated g-C3N4 and the bare g-C3N4 (38.6%) under the same condition. This work highlights a NP size-controlled strategy to tuning the synergistic heterojunction and SPR effect in metal NPs-semiconductor photocatalysis, which could be generalized in designing efficient and cost-effective photocatalytic systems for the clean-up of many other atmospheric pollutants. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:532 / 540
页数:9
相关论文
共 50 条
  • [31] Graphitic carbon nitride loaded with bismuth nanoparticles displays antibacterial photocatalytic activity
    Hui Zhang
    Ling Li
    Qian-Qian Li
    Tao Ma
    Jia-Qi Gao
    Jin-Bo Xue
    Shuang Gao
    Rare Metals, 2022, 41 : 1570 - 1582
  • [32] Silver nanoparticles/graphitic carbon nitride nanosheets for improved visible-light-driven photocatalytic performance
    Ye, Mao
    Wang, Rong
    Shao, Yinhua
    Tian, Cancan
    Zheng, Zejun
    Gu, Xiangyu
    Wei, Wei
    Wei, Ang
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2018, 351 : 145 - 153
  • [33] Fabrication of structural defects and carboxyl groups on graphitic carbon nitride with enhanced visible light photocatalytic activity
    Wang, Tairan
    Wan, Tao
    He, Songsong
    Wang, Jian
    Yu, Mingrui
    Jia, Yang
    Tang, Qi
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [34] Graphitic carbon nitride nanoribbon for enhanced visible-light photocatalytic H2 production
    Bu, Xiuming
    Bu, Yu
    Yang, Siwei
    Sun, Feng
    Tian, Linfan
    Peng, Zheng
    He, Peng
    Sun, Jing
    Huang, Tao
    Wang, Xianying
    Ding, Guqiao
    Yang, Junhe
    Xie, Xiaoming
    RSC ADVANCES, 2016, 6 (113): : 112210 - 112214
  • [35] Preparation of Ce-Doped Graphitic Carbon Nitride with Enhanced Visible-light Photocatalytic Activity
    Liang Ruiyu
    Xu Dongdong
    Zha Wenying
    Qi Jizhen
    Huang Langhuan
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2016, 37 (11): : 1953 - 1959
  • [36] Preparation of Fe-Doped Graphitic Carbon Nitride with Enhanced Visible-Light Photocatalytic Activity
    Jin Rui-Rui
    You Ji-Guang
    Zhang Qian
    Liu Dan
    Hu Shao-Zheng
    Gui Jian-Zhou
    ACTA PHYSICO-CHIMICA SINICA, 2014, 30 (09) : 1706 - 1712
  • [37] A binary polymer composite of graphitic carbon nitride and poly(diphenylbutadiyne) with enhanced visible light photocatalytic activity
    Lei, Juying
    Liu, Fenghui
    Wang, Lingzhi
    Liu, Yongdi
    Zhang, Jinlong
    RSC ADVANCES, 2017, 7 (44): : 27377 - 27383
  • [38] Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting
    Thaweesak, Supphasin
    Wang, Songcan
    Lyu, Miaoqiang
    Xiao, Mu
    Peerakiatkhajohn, Piangjai
    Wang, Lianzhou
    DALTON TRANSACTIONS, 2017, 46 (32) : 10714 - 10720
  • [39] Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride
    Chai, Bo
    Yan, Juntao
    Wang, Chunlei
    Ren, Zhandong
    Zhu, Yuchan
    APPLIED SURFACE SCIENCE, 2017, 391 : 376 - 383
  • [40] Graphene quantum dots decorated graphitic carbon nitride nanorods for photocatalytic removal of antibiotics
    Yuan, Aili
    Lei, Hua
    Xi, Fengna
    Liu, Jiyang
    Qin, Laishun
    Chen, Zhi
    Dong, Xiaoping
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 548 : 56 - 65