Prepro-tachykinin gene expression in the brain of the honeybee Apis mellifera

被引:53
|
作者
Takeuchi, H
Yasuda, A
Yasuda-Kamatani, Y
Sawata, M
Matsuo, Y
Kato, A
Tsujimoto, A
Nakajima, T
Kubo, T [1 ]
机构
[1] Univ Tokyo, Dept Biol Sci, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan
[2] Suntory Inst Bioorgan Res, Osaka 6188503, Japan
[3] DNA Chip Res, Hodogaya Ku, Yokohama, Kanagawa 2400005, Japan
关键词
social behavior; mushroom body; tackykinin; cDNA microarray; honeybee; Apis mellifera (Insecta);
D O I
10.1007/s00441-004-0865-y
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We have recently identified a tachykinin-related peptide (AmTRP) from the mushroom bodies (MBs) of the brain of the honeybee Apis mellifera L. by using direct matrix-assisted laser desorption/ionization with time-of-flight mass spectometry and have isolated its cDNA. Here, we have examined prepro-AmTRP gene expression in the honeybee brain by using in situ hybridization. The prepro-AmTRP gene is expressed predominantly in the MBs and in some neurons located in the optic and antennal lobes. cDNA microarray studies have revealed that AmTRP expression is enriched in the MBs compared with other brain regions. There is no difference in AmTRP-expressing cells among worker, queen, and drone brains, suggesting that the cell types that express the prepro-AmTRP gene do not change according to division of labor, sex, or caste. The unique expression pattern of the prepro-AmTRP gene suggests that AmTRPs function as neuromodulators in the MBs of the honeybee brain.
引用
收藏
页码:281 / 293
页数:13
相关论文
共 50 条
  • [31] Influences of octopamine and juvenile hormone on locomotor behavior and period gene expression in the honeybee, Apis mellifera
    Bloch, Guy
    Meshi, Avital
    JOURNAL OF COMPARATIVE PHYSIOLOGY A-NEUROETHOLOGY SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY, 2007, 193 (02): : 181 - 199
  • [32] Lateralization of olfaction in the honeybee Apis mellifera
    Letzkus, Pinar
    Ribi, Willi A.
    Wood, Jeff T.
    Zhu, Hong
    Zhang, Shao-Wu
    Srinivasan, Mandyam V.
    CURRENT BIOLOGY, 2006, 16 (14) : 1471 - 1476
  • [33] Thermal learning in the honeybee, Apis mellifera
    Hammer, Tobin J.
    Hata, Curtis
    Nieh, James C.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2009, 212 (23): : 3928 - 3934
  • [34] The defensive response of the honeybee Apis mellifera
    Nouvian, Morgane
    Reinhard, Judith
    Giurfa, Martin
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2016, 219 (22): : 3505 - 3517
  • [35] Identification of major royal jelly proteins in the brain of the honeybee Apis mellifera
    Peixoto, Leonardo Gomes
    Calabria, Luciana Karen
    Garcia, Liudy
    Capparelli, Fausto Emilio
    Goulart, Luiz Ricardo
    de Sousa, Marcelo Valle
    Espindola, Foued Salmen
    JOURNAL OF INSECT PHYSIOLOGY, 2009, 55 (08) : 671 - 677
  • [36] HONEYBEE: THE BUSY LIFE OF APIS MELLIFERA
    Russo, Maria
    NEW YORK TIMES BOOK REVIEW, 2020, 125 (05): : 18 - 18
  • [37] Honeybee: The Busy Life of Apis Mellifera
    Sills, Jennifer
    SCIENCE, 2020, 370 (6521) : 1159 - 1159
  • [38] Virus infections of the honeybee (Apis mellifera)
    Grabensteiner, E
    Nowotny, N
    WIENER TIERARZTLICHE MONATSSCHRIFT, 2001, 88 (03): : 79 - 87
  • [39] CpG methylation in the hexamerin 110 gene in the European honeybee, Apis mellifera
    Ikeda, Takashi
    Furukawa, Seiichi
    Nakamura, Jun
    Sasaki, Masami
    Sasaki, Tetsuhiko
    JOURNAL OF INSECT SCIENCE, 2011, 11
  • [40] Expression of two microRNAs, ame-mir-276 and -1000, in the adult honeybee (Apis mellifera) brain
    Sayaka Hori
    Kumi Kaneko
    Takeshi H. Saito
    Hideaki Takeuchi
    Takeo Kubo
    Apidologie, 2011, 42 : 89 - 102