Hypoxia-induced amphiphiles inhibit renal Na+,K+-ATPase

被引:24
|
作者
Schonefeld, M
Noble, S
Bertorello, AM
Mandel, LJ
Creer, MH
Portilla, D
机构
[1] UNIV ARKANSAS MED SCI HOSP,DEPT MED,DIV NEPHROL,DEPT PATHOL,LITTLE ROCK,AR 72205
[2] VET ADM MED CTR,LITTLE ROCK,AR
[3] DUKE UNIV,MED CTR,DEPT CELL BIOL,DURHAM,NC 27710
[4] KAROLINSKA HOSP,DEPT MOLEC MED,ROLF LUFT CTR DIABET RES,S-10401 STOCKHOLM,SWEDEN
关键词
D O I
10.1038/ki.1996.184
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
We have characterized the effects of hypoxia on carnitine metabolism in proximal tubules. Hypoxia for 10 minutes resulted in a significant increase in the mass of long chain acylcarnitines (LCAC) (control 53 +/- 20 vs, hypoxia 118 +/- 38 pmol . mg(-1) protein). Since LCAC are proximal metabolites in the beta-oxidation of fatty acids, these data suggest that inhibition of fatty acid oxidation occurs during hypoxia in the proximal tubule. In addition to LCAC accumulation, hypoxia resulted in a significant increase in the mass of lysoplasmenylcholine LPLasCho (control 62 +/- 15 pmol/mg vs. 20 min hypoxia 146 +/- 21 pmol/mg protein, N = 4) and also in increases in the mass of monoacyl LPC (control 122 +/- 24 pmol/mg protein vs. 283 +/- 35 pmol/mg protein after 40 min of hypoxia). We tested the possibility that these compounds that accumulate during hypoxia could inhibit proximal tubule Na+,K+-ATPase. LPC, LPlasC. and LCAC inhibited proximal tubule nystatin-stimulated oxygen consumption (QO(2)) and proximal tubule Na+,KC-ATPase activity in a dose-dependent manner. In addition, LPC, LPlasC, and LCAC directly inhibited (65%, 80%, and 60%, respectively) Na+,K+-ATPase activity purified from kidney cortex at similar concentrations at which they accumulate during hypoxia (above 25 mu M) The present data suggest that amphiphile accumulation may have a potential pathophysiologic role in the proximal tubule during renal ischemia.
引用
收藏
页码:1289 / 1296
页数:8
相关论文
共 50 条
  • [31] Na+ Access Kinetics in the Na+/K+-Atpase Pump
    Holmgren, Miguel
    Gadsby, David C.
    Bezanilla, Francisco
    Rakowski, Robert F.
    De Weer, Paul
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 708A - 708A
  • [32] Effects of thyroxine on hyperkalemia and renal cortical Na+, K+-ATPase activity induced by cyclosporin A
    You, CW
    Park, YH
    Lee, ES
    Kim, YJ
    Shin, SM
    Park, MO
    JOURNAL OF KOREAN MEDICAL SCIENCE, 2002, 17 (05) : 625 - 632
  • [33] β subunit affects Na+ and K+ affinities of Na+/K+-ATPase: Na+ and K+ affinities of a hybrid Na+/K+-ATPase composed of insect α and mammalian β subunits
    Homareda, Haruo
    Suga, Kei
    Yamamoto-Hijikata, Sachiko
    Eishi, Yoshinobu
    Ushimaru, Makoto
    Hara, Yukichi
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2022, 32
  • [34] Na+,K+-ATPase As a Polyfunctional Protein
    Lopina, O. D.
    Bukach, O., V
    Sidorenko, S., V
    Klimanova, E. A.
    BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY, 2022, 16 (03) : 207 - 216
  • [35] Interaction of sanguinarine with the Na+/K+-ATPase
    Janovska, M.
    Kubala, M.
    Simanek, V.
    Ulrichova, J.
    FEBS JOURNAL, 2010, 277 : 207 - 208
  • [36] Ion Pathways in the Na+/K+-ATPase
    Cechova, Petra
    Berka, Karel
    Kubala, Martin
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (12) : 2434 - 2444
  • [37] Salt, Na+,K+-ATPase and hypertension
    Jaitovich, Ariel
    Bertorello, Alejandro M.
    LIFE SCIENCES, 2010, 86 (3-4) : 73 - 78
  • [38] NA+, K+-ATPASE ISOFORMS IN THE RETINA
    SCHNEIDER, B
    INTERNATIONAL REVIEW OF CYTOLOGY-A SURVEY OF CELL BIOLOGY, 1992, 133 : 151 - 185
  • [39] Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation
    Zhang, Linan
    Zhang, Zhe
    Guo, Huicai
    Wang, Yongli
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2008, 22 (06) : 615 - 621
  • [40] Translocation of Na+,K+-ATPase is induced by Rho small GTPase in renal epithelial cells
    Maeda, A
    Amano, M
    Fukata, Y
    Kaibuchi, K
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 297 (05) : 1231 - 1237