Almost Sure Well-Posedness of Fractional Schrodinger Equations with Hartree Nonlinearity

被引:1
|
作者
Hwang, Gyeongha [1 ]
机构
[1] Natl Taiwan Univ, Natl Ctr Theoret Sci, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
关键词
Nonlinear Schrodinger equation; fractional Schrodinger equation; Hartree non linearity; almost sure well-posedness; WAVE EQUATION; INSTABILITY; SCATTERING; REGULARITY;
D O I
10.4171/PRIMS/54-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Cauchy problem of an energy-critical fractional Schrodinger equation with Hartree nonlinearity below the energy space. Using randomization of functions on R-d associated with the Wiener decomposition, we prove that the Cauchy problem is almost surely locally well posed. Our result includes the Hartree Schrodinger equation (alpha = 2).
引用
收藏
页码:1 / 44
页数:44
相关论文
共 50 条
  • [41] Global well-posedness for the fractional Schrodinger-Boussinesq system
    Han, Lijia
    Zhang, Jingjun
    Guo, Boling
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2644 - 2652
  • [42] On nonlinear fractional Schrodinger equations with Hartree-type nonlinearity
    Lu, Dengfeng
    Xu, Guojin
    APPLICABLE ANALYSIS, 2018, 97 (02) : 255 - 273
  • [43] Almost sure well-posedness for the cubic nonlinear Schrodinger equation in the super-critical regime on Td, d ≥ 3
    Yue, Haitian
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (01): : 243 - 294
  • [44] Almost sure well-posedness for the periodic 3D quintic nonlinear Schrodinger equation below the energy space
    Nahmod, Andrea R.
    Staffilani, Gigliola
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (07) : 1687 - 1759
  • [45] Stochastic nonlinear Schrodinger equations driven by a fractional noise Well-posedness, large deviations and support
    Gautier, Eric
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 848 - 861
  • [46] Well-posedness and regularity for fractional damped wave equations
    Zhou, Yong
    He, Jia Wei
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (02): : 425 - 458
  • [47] Well-posedness and regularity for fractional damped wave equations
    Yong Zhou
    Jia Wei He
    Monatshefte für Mathematik, 2021, 194 : 425 - 458
  • [48] Well-Posedness and Approximation for Nonhomogeneous Fractional Differential Equations
    Liu, Ru
    Piskarev, Sergey
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (06) : 619 - 643
  • [49] Well-posedness and stability for fuzzy fractional differential equations
    Zhang, Xuping
    Xi, Yanli
    O'Regan, Donal
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, : 980 - 993
  • [50] The well-posedness and exact solution of fractional magnetohydrodynamic equations
    Mingshuo Liu
    Yong Fang
    Huanhe Dong
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72