Immune Evolution Particle Filter for Soil Moisture Data Assimilation

被引:13
|
作者
Ju, Feng [1 ]
An, Ru [1 ]
Sun, Yaxing [1 ]
机构
[1] Hohai Univ, Sch Earth Sci & Engn, Nanjing 211100, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
immune evolution algorithm; particle filter; Markov chain Monte Carlo; soil moisture; data assimilation; Variable Infiltration Capacity; ENSEMBLE KALMAN FILTER; HYDROLOGIC DATA ASSIMILATION; SEQUENTIAL DATA ASSIMILATION; PARAMETER-ESTIMATION; MODEL; SIMULATION; SATELLITE; WATER; ALGORITHM; SYSTEM;
D O I
10.3390/w11020211
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Data assimilation (DA) has been widely used in land surface models (LSM) to improve model state estimates. Among various DA methods, the particle filter (PF) with Markov chain Monte Carlo (MCMC) has become increasingly popular for estimating the states of the nonlinear and non-Gaussian LSMs. However, the standard PF always suffers from the particle impoverishment problem, characterized by loss of particle diversity. To solve this problem, an immune evolution particle filter with MCMC simulation inspired by the biological immune system, entitled IEPFM, is proposed for DA in this paper. The merit of this approach is in imitating the antibody diversity preservation mechanism to further improve particle diversity, thus increasing the accuracy of estimates. Furthermore, the immune memory function refers to promise particle evolution process towards optimal estimates. Effectiveness of the proposed approach is demonstrated by the numerical simulation experiment using a highly nonlinear atmospheric model. Finally, IEPFM is applied to a soil moisture (SM) assimilation experiment, which assimilates in situ observations into the Variable Infiltration Capacity (VIC) model to estimate SM in the MaQu network region of the Tibetan Plateau. Both synthetic and real case experiments demonstrate that IEPFM mitigates particle impoverishment and provides more accurate assimilation results compared with other popular DA algorithms.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Recent advances on soil moisture data assimilation
    Ni-Meister, Wenge
    PHYSICAL GEOGRAPHY, 2008, 29 (01) : 19 - 37
  • [22] Merging particle filter for sequential data assimilation
    Nakano, S.
    Ueno, G.
    Higuchi, T.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2007, 14 (04) : 395 - 408
  • [23] Unscented weighted ensemble Kalman filter for soil moisture assimilation
    Fu, Xiaolei
    Yu, Zhongbo
    Ding, Yongjian
    Qin, Yu
    Luo, Lifeng
    Zhao, Chuancheng
    Lu, Haishen
    Jiang, Xiaolei
    Ju, Qin
    Yang, Chuanguo
    JOURNAL OF HYDROLOGY, 2020, 580 (580)
  • [24] Particle filter-based data assimilation for identification of soil parameters with application in tunneling
    Nguyen, L. T.
    Nestorovic, T.
    Fujisawa, K.
    Murakami, A.
    COMPUTER METHODS AND RECENT ADVANCES IN GEOMECHANICS, 2015, : 1241 - 1246
  • [25] Covariance-Based Selection of Parameters for Particle Filter Data Assimilation in Soil Hydrology
    Jamal, Alaa
    Linker, Raphael
    WATER, 2022, 14 (22)
  • [26] Robust simulation of root zone soil moisture with assimilation of surface soil moisture data
    Montaldo, N
    Albertson, JD
    Mancini, M
    Kiely, G
    WATER RESOURCES RESEARCH, 2001, 37 (12) : 2889 - 2900
  • [27] SMOS NEURAL NETWORK SOIL MOISTURE DATA ASSIMILATION
    Rodriguez-Fernandez, N. J.
    de Rosnay, P.
    Albergel, C.
    Aires, F.
    Prigent, C.
    Richaume, P.
    Kerr, Y. H.
    Drusch, M.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5548 - 5551
  • [28] Ensemble Kalman smoother for soil moisture data assimilation
    Chu, Nan
    Huang, Chunlin
    Du, Peijun
    Shuikexue Jinzhan/Advances in Water Science, 2015, 26 (02): : 243 - 249
  • [29] Spatiotemporal estimation of model error to improve soil moisture analysis in ensemble Kalman filter data assimilation
    Li, Yize
    Lu, Jianzhong
    Shu, Hong
    Geng, Xiaomeng
    Jiang, Haonan
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (03)
  • [30] Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter
    De Lannoy, Gabrielle J. M.
    Reichle, Rolf H.
    Houser, Paul R.
    Pauwels, Valentijn R. N.
    Verhoest, Niko E. C.
    WATER RESOURCES RESEARCH, 2007, 43 (09)