Differential geometry of grassmannians and the Plucker map

被引:5
|
作者
Anan'in, Sasha [1 ]
Grossi, Carlos H. [2 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Matemat, BR-13083859 Campinas, SP, Brazil
[2] Univ Sao Paulo, ICMC, Dept Matemat, BR-13566590 Sao Carlos, SP, Brazil
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2012年 / 10卷 / 03期
关键词
Classic geometries; Plucker map; Hyperbolic geometry;
D O I
10.2478/s11533-012-0021-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Plucker map between grassmannians, we study basic aspects of classic grassmannian geometries. For 'hyperbolic' grassmannian geometries, we prove some facts (for instance, that the Plucker map is a minimal isometric embedding) that were previously known in the 'elliptic' case.
引用
收藏
页码:873 / 884
页数:12
相关论文
共 50 条
  • [41] Constructible sheaves on affine Grassmannians and geometry of the dual nilpotent cone
    Achar, Pramod N.
    Riche, Simon
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 205 (01) : 247 - 315
  • [42] Geometrical revelation of correlated characteristics of the ray and axis order of the Plucker coordinates in line geometry
    Dai, Jian S.
    Sun, Jie
    MECHANISM AND MACHINE THEORY, 2020, 153
  • [43] The Direct Sum Map on Grassmannians and Jeu de Taquin for Increasing Tableaux
    Thomas, Hugh
    Yong, Alexander
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (12) : 2766 - 2793
  • [44] Integral geometry on discrete Grassmannians G(d, n) associated to Zn
    Abouelaz, Ahmed
    Ihsane, Abdallah
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (03) : 197 - 220
  • [45] Differential Geometry of 1-type Submanifolds and Submanifolds with 1-type Gauss Map
    Chen, Bang-Yen
    Guler, Erhan
    Yayli, Yusuf
    Hacisalihoglu, Hasan Hilmi
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 4 - 47
  • [46] ON SOME REGULAR MULTI-VEBLEN CONFIGURATIONS, THE GEOMETRY OF COMBINATORIAL QUASI GRASSMANNIANS
    Prazmowska, Malgorzata
    DEMONSTRATIO MATHEMATICA, 2009, 42 (02) : 389 - 404
  • [47] Geometry and Dynamics of the Pentagram Map
    Tabachnikov, S.
    GEOMETRIC METHODS IN PHYSICS, 2009, 1191 : 172 - 181
  • [48] THE GEOMETRY OF THE GENERALIZED GAUSS MAP
    HOFFMAN, DA
    OSSERMAN, R
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 28 (236) : 1 - 105
  • [49] THE MOMENTUM MAP IN POISSON GEOMETRY
    Fernandes, Rui Loja
    Ortega, Juan-Pablo
    Ratiu, Tudor S.
    AMERICAN JOURNAL OF MATHEMATICS, 2009, 131 (05) : 1261 - 1310
  • [50] Geometry and Algebra of the Deltoid Map
    Bowman, Joshua P.
    AMERICAN MATHEMATICAL MONTHLY, 2020, 128 (01): : 25 - 39