Generalization performances of perceptrons

被引:0
|
作者
Gavin, G [1 ]
机构
[1] Univ Lyon 2, Lab ERIC, F-69676 Bron, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents new results about the confidence bounds on the generalization performances of perceptrons. It deals with regression problems. It is shown that the probability to get a generalization error greater than the empirical error plus a precision E, depends on the number of inputs and on the magnitude of the coefficients of the combination. The result presented does not require to bound a priori the magnitude of these coefficients, the size and the number of layers.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 50 条
  • [21] Phase transitions in the generalization behaviour of multilayer perceptrons: II. The influence of noise
    Schottky, B
    Krey, U
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24): : 8541 - 8571
  • [22] A Kuhn-Tancker cavity method for generalization with applications to perceptrons with Ising and Potts neurons
    Gerl, F
    Krey, U
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23): : 6501 - 6516
  • [23] SIX GRADERS' GENERALIZATION PERFORMANCES OF FIGURE PATTERN
    Chen, Chia-Huang
    PROCEEDINGS OF THE 35TH CONFERENCE OF THE INTERNATIONAL GROUP FOR THE PSYCHOLOGY OF MATHEMATICS EDUCATION, VOL. 1: DEVELOPING MATHEMATICAL THINKING, 2011, : 273 - 273
  • [24] Generalization error in high-dimensional perceptrons: Approaching Bayes error with convex optimization
    Aubin, Benjamin
    Krzakala, Florent
    Lu, Yue M.
    Zdeborova, Lenka
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [25] A hybrid learning algorithm for multilayer perceptrons to improve generalization under sparse training data conditions
    Tonomura, M
    Nakayama, K
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 967 - 972
  • [26] Confidence bounds for the generalization performances of linear combination of functions
    Gavin, G
    Elisseeff, A
    NINTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS (ICANN99), VOLS 1 AND 2, 1999, (470): : 298 - 303
  • [27] GENERALIZATION OF THE RESONANT SWITCH CONCEPT STRUCTURES AND PERFORMANCES.
    Lab d'Electrotechnique et, d'Electronique Industrielle,, ENSEEIHT, Lab d'Electrotechnique et d'Electronique Industrielle, ENSEEIHT
    RGE Rev Gen Electr, 1988, 2 (37-47):
  • [28] GENERALIZATION OF THE RESONANT SWITCH CONCEPT STRUCTURES AND PERFORMANCES.
    Meynard, T.A.
    Cheron, Y.
    Foch, H.
    Revue generale de l'electricite Paris, 1988, (02): : 36 - 47
  • [29] GENERALIZATION OF CHILDRENS IDENTITY MATCHING-TO-SAMPLE PERFORMANCES TO NOVEL STIMULI
    BROWN, AK
    BROWN, JL
    POULSON, CL
    PSYCHOLOGICAL RECORD, 1995, 45 (01): : 29 - 43
  • [30] Convex perceptrons
    Garcia, Daniel
    Gonzalez, Ana
    Dorronsoro, Jose R.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2006, PROCEEDINGS, 2006, 4224 : 578 - 585