Percolation in invariant Poisson graphs with i.i.d. degrees

被引:6
|
作者
Deijfen, Maria [1 ]
Haggstrom, Olle [2 ]
Holroyd, Alexander E. [3 ,4 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
[2] Chalmers Univ Technol, Dept Math, SE-11428 Stockholm, Sweden
[3] Microsoft Res, Redmond, WA 98052 USA
[4] Univ British Columbia, Vancouver, BC V6T 1Z2, Canada
来源
ARKIV FOR MATEMATIK | 2012年 / 50卷 / 01期
基金
瑞典研究理事会;
关键词
STATIONARY RANDOM GRAPHS; PRESCRIBED IID DEGREES; POINT;
D O I
10.1007/s11512-010-0139-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let each point of a homogeneous Poisson process in R-d independently be equipped with a random number of stubs (half-edges) according to a given probability distribution mu on the positive integers. We consider translation-invariant schemes for perfectly matching the stubs to obtain a simple graph with degree distribution mu. Leaving aside degenerate cases, we prove that for any mu there exist schemes that give only finite components as well as schemes that give infinite components. For a particular matching scheme which is a natural extension of Gale-Shapley stable marriage, we give sufficient conditions on mu for the absence and presence of infinite components.
引用
收藏
页码:41 / 58
页数:18
相关论文
共 50 条
  • [1] On the nonuniqueness of the invariant probability for i.i.d. random logistic maps
    Athreya, KB
    Dai, JJ
    [J]. ANNALS OF PROBABILITY, 2002, 30 (01): : 437 - 442
  • [2] Random rotor walks and i.i.d. sandpiles on Sierpiński graphs
    Kaiser, Robin
    Sava-Huss, Ecaterina
    [J]. STATISTICS & PROBABILITY LETTERS, 2024, 209
  • [3] Zeros of the i.i.d. Gaussian power series:: a conformally invariant determinantal process
    Peres, Yuval
    Virag, Balint
    [J]. ACTA MATHEMATICA, 2005, 194 (01) : 1 - 35
  • [4] The periodogram of an i.i.d. sequence
    Fay, G
    Soulier, P
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 92 (02) : 315 - 343
  • [5] Spectral measures of factor of i.i.d. processes on vertex-transitive graphs
    Backhausz, Agnes
    Virag, Balint
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 2260 - 2278
  • [6] Sums of i.i.d. Random Variables
    Shi, Zhan
    [J]. BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 115 - 123
  • [7] Monotone factors of I.I.D. processes
    Karen Ball
    [J]. Israel Journal of Mathematics, 2005, 150 : 205 - 227
  • [8] Data association hypothesis evaluation for i.i.d. but non-Poisson multiple target tracking
    Mori, S
    Chong, CY
    [J]. SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2004, 2004, 5428 : 224 - 236
  • [9] Random interlacement is a factor of i.i.d.
    Borbenyi, Marton
    Rath, Balazs
    Rokob, Sandor
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28 : 1
  • [10] Power series with i.i.d. coefficients
    Arnold, Barry C.
    Athreya, Krishna B.
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (03) : 923 - 929