Random interlacement is a factor of i.i.d.

被引:0
|
作者
Borbenyi, Marton [1 ,2 ]
Rath, Balazs [2 ,3 ,4 ]
Rokob, Sandor [2 ,3 ]
机构
[1] Eotvos Lorand Univ, Math Inst, Dept Comp Sci, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[2] Alfred Reny Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[4] MTA BME Stochast Res Grp, Muegyetem Rkp 3, H-1111 Budapest, Hungary
来源
关键词
random interlacements; factor of iid; random walk; unimodularity; FINITARY CODINGS; POLYNOMIAL-GROWTH; RANDOM-WALK; PERCOLATION; ENTROPY; TORUS;
D O I
10.1214/23-EJP950
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The random interlacement point process (introduced in [47], generalized in [50]) is a Poisson point process on the space of labeled doubly infinite nearest neighbour trajectories modulo time-shift on a transient graph G. We show that the random interlacement point process on any transient transitive graph G is a factor of i.i.d., i.e., it can be constructed from a family of i.i.d. random variables indexed by vertices of the graph via an equivariant measurable map. Our proof uses a variant of the soft local time method (introduced in [37]) to construct the interlacement point process as the almost sure limit of a sequence of finite-length variants of the model with increasing length. We also discuss a more direct method of proving that the interlacement point process is a factor of i.i.d. which works if and only if G is non-unimodular.
引用
收藏
页数:46
相关论文
共 50 条
  • [1] Sums of i.i.d. Random Variables
    Shi, Zhan
    [J]. BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 115 - 123
  • [2] Moderate deviations for I.I.D. random variables
    Eichelsbacher, Peter
    Lowe, Matthias
    [J]. ESAIM - Probability and Statistics, 2003, 7 : 207 - 216
  • [3] Random coverings of the circle with i.i.d. centers
    JunMin Tang
    [J]. Science China Mathematics, 2012, 55 : 1257 - 1268
  • [4] Random coverings of the circle with i.i.d. centers
    Tang JunMin
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (06) : 1257 - 1268
  • [5] Redundant observations at testing i.i.d. random variables
    Konopka, J
    Schmitz, N
    [J]. STATISTICAL PAPERS, 2002, 43 (04) : 595 - 602
  • [6] On a coloured tree with non i.i.d. random labels
    Michael, Skevi
    Volkov, Stanislav
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) : 1896 - 1903
  • [7] Redundant observations at testing i.i.d. random variables
    Jörg Konopka
    Norbert Schmitz
    [J]. Statistical Papers, 2002, 43 : 595 - 602
  • [8] Complete moment convergence for i.i.d. random variables
    Qiu, Dehua
    Chen, Pingyan
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 91 : 76 - 82
  • [9] Redundant observations at testing i.i.d. random variables
    Jörg Konopka
    Norbert Schmitz
    [J]. Statistical Papers, 2003, 44 : 289 - 289
  • [10] Local invariance principle for i.i.d. random variables
    Breton, JC
    Davydov, Y
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (07): : 673 - 676