The structure and interaction mechanism of a polyelectrolyte complex: a dissipative particle dynamics study

被引:22
|
作者
Meneses-Juarez, Efrain [1 ]
Marquez-Beltran, Cesar [1 ]
Francisco Rivas-Silva, Juan [1 ]
Pal, Umapada [1 ]
Gonzalez-Melchor, Minerva [1 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis Luis Rivera Terrazas, Puebla 72570, Mexico
关键词
INTERPOLYELECTROLYTE COMPLEXES; MESOSCOPIC SIMULATION; DNA-BINDING; SYSTEMS; BEHAVIOR; POLYCATIONS; CHLORIDE); COPOLYMER; SEQUENCE;
D O I
10.1039/c5sm00911a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanism of complex formation of two oppositely charged linear polyelectrolytes dispersed in a solvent is investigated by using dissipative particle dynamics (DPD) simulation. In the polyelectrolyte solution, the size of the cationic polyelectrolyte remains constant while the size of the anionic chain increases. We analyze the influence of the anionic polyelectrolyte size and salt effect (ionic strength) on the conformational changes of the chains during complex formation. The behavior of the radial distribution function, the end-to-end distance and the radius of gyration of each polyelectrolyte is examined. These results showed that the effectiveness of complex formation is strongly influenced by the process of counterion release from the polyelectrolyte chains. The radius of gyration of the complex is estimated using the Fox-Flory equation for a wormlike polymer in a theta solvent. The addition of salts in the medium accelerates the complex formation process, affecting its radius of gyration. Depending on the ratio of chain lengths a compact complex or a loosely bound elongated structure can be formed.
引用
收藏
页码:5889 / 5897
页数:9
相关论文
共 50 条
  • [31] Artificial biomembrane morphology: a dissipative particle dynamics study
    Becton, Matthew
    Averett, Rodney
    Wang, Xianqiao
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2018, 36 (11): : 2976 - 2987
  • [32] A hybrid multiscale dissipative particle dynamics method coupling particle and continuum for complex fluid
    Li, Yanggui
    Geng, Xingguo
    Ouyang, Jie
    Zang, Duyang
    Zhuang, Xin
    MICROFLUIDICS AND NANOFLUIDICS, 2015, 19 (04) : 941 - 952
  • [33] Dissipative Particle Dynamics interaction parameters from ab initio calculations
    Sepehr, Fatemeh
    Paddison, Stephen J.
    CHEMICAL PHYSICS LETTERS, 2016, 645 : 20 - 26
  • [34] Interaction parameters between carbon nanotubes and water in Dissipative Particle Dynamics
    Minh Vo
    Papavassiliou, Dimitrios V.
    MOLECULAR SIMULATION, 2016, 42 (09) : 737 - 744
  • [35] A simple analytical model of complex wall in multibody dissipative particle dynamics
    Mishra, A.
    Hemeda, A.
    Torabi, M.
    Palko, J.
    Goyal, S.
    Li, D.
    Ma, Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 416 - 426
  • [36] DISSIPATIVE PARTICLE DYNAMICS: INTRODUCTION, METHODOLOGY AND COMPLEX FLUID APPLICATIONS - A REVIEW
    Moeendarbary, E.
    Ng, T. Y.
    Zangeneh, M.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2009, 1 (04) : 737 - 763
  • [37] Fluid particle dynamics: A synthesis of dissipative particle dynamics and smoothed particle dynamics
    Espanol, P
    EUROPHYSICS LETTERS, 1997, 39 (06): : 605 - 610
  • [38] Foundations of dissipative particle dynamics
    Flekkoy, Eirik G., 2000, American Institute of Physics Inc. (62):
  • [39] Perspective: Dissipative particle dynamics
    Espanol, Pep
    Warren, Patrick B.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (15):
  • [40] Applications of dissipative particle dynamics
    Groot, RD
    NOVEL METHODS IN SOFT MATTER SIMULATIONS, 2004, 640 : 5 - 38