High-order implicit time integration for unsteady incompressible flows

被引:12
|
作者
Montlaur, A. [2 ,3 ]
Fernandez-Mendez, S. [2 ]
Huerta, A. [1 ,2 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 3, ETS Ingenieros Caminos, E-08034 Barcelona, Spain
[2] Univ Politecn Catalunya BarcelonaTech, Lab Calcul Numer LaCaN, Barcelona 08034, Spain
[3] Univ Politecn Cataluna, Escola Engn Telecomunicacio & Aeroespacial Castel, E-08034 Barcelona, Spain
关键词
differential algebraic equations; incompressible Navier-Stokes; high-order time integrators; Runge-Kutta; Rosenbrock; discontinuous Galerkin; NAVIER-STOKES EQUATIONS; FINITE-ELEMENT-METHOD; RUNGE-KUTTA METHODS; DISCONTINUOUS GALERKIN METHODS; FRACTIONAL-STEP METHOD; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; EULER EQUATIONS; PART I; APPROXIMATIONS;
D O I
10.1002/fld.2703
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The spatial discretization of unsteady incompressible NavierStokes equations is stated as a system of differential algebraic equations, corresponding to the conservation of momentum equation plus the constraint due to the incompressibility condition. Asymptotic stability of RungeKutta and Rosenbrock methods applied to the solution of the resulting index-2 differential algebraic equations system is analyzed. A critical comparison of Rosenbrock, semi-implicit, and fully implicit RungeKutta methods is performed in terms of order of convergence and stability. Numerical examples, considering a discontinuous Galerkin formulation with piecewise solenoidal approximation, demonstrate the applicability of the approaches and compare their performance with classical methods for incompressible flows. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:603 / 626
页数:24
相关论文
共 50 条
  • [41] A High-Order Direct Discontinuous Galerkin Method for Variable Density Incompressible Flows
    Zhang, Fan
    Liu, Tiegang
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 32 (03) : 850 - 877
  • [42] High-order strand grid methods for low-speed and incompressible flows
    Thorne, Jonathan
    Katz, Aaron
    Tong, Oisin
    Yanagita, Yushi
    Tamaki, Yoshiharu
    Delaney, Keegan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2016, 82 (12) : 979 - 996
  • [43] High-order simplified thermal lattice Boltzmann method for incompressible thermal flows
    Chen, Z.
    Shu, C.
    Tan, D.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 1 - 16
  • [44] Solving the incompressible fluid flows by a high-order mesh-free approach
    Rammane, Mohammed
    Mesmoudi, Said
    Tri, Abdeljalil
    Braikat, Bouazza
    Damil, Noureddine
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (05) : 422 - 435
  • [45] High-order accurate numerical solutions of incompressible flows with the artificial compressibility method
    Ekaterinaris, JA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 45 (11) : 1187 - 1207
  • [46] High-order implicit residual smoothing time scheme for direct and large eddy simulations of compressible flows
    Cinnella, P.
    Content, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 326 : 1 - 29
  • [47] A high-order accurate method for two-dimensional incompressible viscous flows
    De, Arnab Kumar
    Eswaran, Vinayak
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 53 (10) : 1613 - 1628
  • [48] A high-order discontinuous Galerkin method for 2D incompressible flows
    Liu, JG
    Shu, CW
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) : 577 - 596
  • [49] On the development of an implicit high-order Discontinuous Galerkin method for DNS and implicit LES of turbulent flows
    Bassi, F.
    Botti, L.
    Colombo, A.
    Crivellini, A.
    Ghidoni, A.
    Massa, F.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2016, 55 : 367 - 379
  • [50] High-order skew-symmetric Jameson schemes for unsteady compressible flows
    Ducros, F
    Soulères, T
    Laporte, F
    Moinat, P
    Weber, C
    Guinot, V
    Caruelle, B
    DIRECT AND LARGE-EDDY SIMULATION III, 1999, 7 : 417 - 428