High-order implicit time integration for unsteady incompressible flows

被引:12
|
作者
Montlaur, A. [2 ,3 ]
Fernandez-Mendez, S. [2 ]
Huerta, A. [1 ,2 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 3, ETS Ingenieros Caminos, E-08034 Barcelona, Spain
[2] Univ Politecn Catalunya BarcelonaTech, Lab Calcul Numer LaCaN, Barcelona 08034, Spain
[3] Univ Politecn Cataluna, Escola Engn Telecomunicacio & Aeroespacial Castel, E-08034 Barcelona, Spain
关键词
differential algebraic equations; incompressible Navier-Stokes; high-order time integrators; Runge-Kutta; Rosenbrock; discontinuous Galerkin; NAVIER-STOKES EQUATIONS; FINITE-ELEMENT-METHOD; RUNGE-KUTTA METHODS; DISCONTINUOUS GALERKIN METHODS; FRACTIONAL-STEP METHOD; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; EULER EQUATIONS; PART I; APPROXIMATIONS;
D O I
10.1002/fld.2703
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The spatial discretization of unsteady incompressible NavierStokes equations is stated as a system of differential algebraic equations, corresponding to the conservation of momentum equation plus the constraint due to the incompressibility condition. Asymptotic stability of RungeKutta and Rosenbrock methods applied to the solution of the resulting index-2 differential algebraic equations system is analyzed. A critical comparison of Rosenbrock, semi-implicit, and fully implicit RungeKutta methods is performed in terms of order of convergence and stability. Numerical examples, considering a discontinuous Galerkin formulation with piecewise solenoidal approximation, demonstrate the applicability of the approaches and compare their performance with classical methods for incompressible flows. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:603 / 626
页数:24
相关论文
共 50 条
  • [1] HIGH-ORDER IMPLICIT RUNGE-KUTTA METHODS FOR UNSTEADY INCOMPRESSIBLE FLOWS
    Montlaur, A.
    Fernandez-Mendez, S.
    Huerta, A.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2011, 27 (01): : 77 - 91
  • [2] An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows
    Bassi, Francesco
    Crivellini, Andrea
    Di Pietro, Daniele A.
    Rebay, Stefano
    COMPUTERS & FLUIDS, 2007, 36 (10) : 1529 - 1546
  • [3] High-order implicit time integration for unsteady turbulent flow simulations
    Eliasson, Peter
    Weinerfelt, Per
    COMPUTERS & FLUIDS, 2015, 112 : 35 - 49
  • [4] A high-order Discontinuous Galerkin solver for unsteady incompressible turbulent flows
    Noventa, G.
    Massa, F.
    Bassi, F.
    Colombo, A.
    Franchina, N.
    Ghidoni, A.
    COMPUTERS & FLUIDS, 2016, 139 : 248 - 260
  • [5] On the efficiency of a matrix-free linearly implicit time integration strategy for high-order Discontinuous Galerkin solutions of incompressible turbulent flows
    Franciolini, Matteo
    Crivellini, Andrea
    Nigro, Alessandra
    COMPUTERS & FLUIDS, 2017, 159 : 276 - 294
  • [6] A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains
    Linnick, MN
    Fasel, HF
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (01) : 157 - 192
  • [7] A space-time high-order implicit shock tracking method for shock-dominated unsteady flows
    Naudet, Charles J.
    Zahr, Matthew J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501
  • [8] A Simple Cellwise High-order Implicit Discontinuous Galerkin Scheme for Unsteady Turbulent Flows
    Asada, Hiroyuki
    Kawai, Soshi
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2019, 62 (02) : 93 - 107
  • [9] Uniformly high order methods for unsteady incompressible flows
    Drikakis, D
    GODUNOV METHODS: THEORY AND APPLICATIONS, 2001, : 263 - 283
  • [10] On efficient high-order semi-implicit time-stepping schemes for unsteady incompressible Navier-Stokes equations
    Loy, K. C.
    Bourgault, Y.
    COMPUTERS & FLUIDS, 2017, 148 : 166 - 184