A ZnS nanocrystal/reduced graphene oxide composite anode with enhanced electrochemical performances for lithium-ion batteries

被引:57
|
作者
Feng, Yan [1 ,2 ]
Zhang, Yuliang [1 ]
Wei, Yuzhen [1 ]
Song, Xiangyun [2 ]
Fub, Yanbo [2 ]
Battaglia, Vincent S. [2 ]
机构
[1] Tianjin Normal Univ, Tianjin Key Lab Struct & Performance Funct Mol, Key Lab Inorgan Organ Hybrid Funct Mat Chem, Minist Educ,Coll Chem, Tianjin 300387, Peoples R China
[2] Lawrence Berkeley Natl Lab, Energy Technol Area, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
关键词
CDSE/ZNS QUANTUM DOTS; IMPEDANCE SPECTROSCOPY; HYDROTHERMAL SYNTHESIS; ELECTROLYTE INTERFACE; LI; ADSORPTION; CONVERSION; EMISSION; BEHAVIOR; SYSTEMS;
D O I
10.1039/c6cp06609g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple route for the preparation of ZnS nanocrystal/reduced graphene oxide (ZnS/RGO) by a hydrothermal synthesis process was achieved. The chemical composition, morphology, and structural characterization reveal that the ZnS/RGO composite is composed of sphalerite-phased ZnS nanocrystals uniformly dispersed on functional RGO sheets with a high specific surface area. The ZnS/RGO composite was utilized as an anode in the construction of a high-performance lithium-ion battery. The ZnS/RGO composite with appropriate RGO content exhibits a high reversible specific capacity (780 mA h g(-1)), excellent cycle stability over 100 cycles (71.3% retention), and good rate performance at 2C (51.2% of its capacity when measured at a 0.1C rate). To further investigate this ZnS/RGO anode for practical use in full Li-ion cells, we tested the electrochemical performance of the ZnS/RGO anode at different cut-off voltages for the first time. The presence of RGO plays an important role in providing high conductivity as well as a substrate with a high surface area. This helps alleviate the typically problems associated with volume expansion and shrinkage during prolonged cycling. Additionally, the RGO provides multiple nucleation points that result in a uniformly dispersed film of nanosized ZnS that covers its surface. Thus, the high surface area RGO enables high electronic conductivity and fast charge transfer kinetics for ZnS lithiation/delithiation.
引用
收藏
页码:30630 / 30642
页数:13
相关论文
共 50 条
  • [31] Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries
    Zhang, Su
    Zhu, Lingxiang
    Song, Huaihe
    Chen, Xiaohong
    Zhou, Jisheng
    NANO ENERGY, 2014, 10 : 172 - 180
  • [32] Influence of graphene oxide on electrochemical performance of Si anode material for lithium-ion batteries
    Wenjing Liu
    Jinjin Jiang
    Hao Wang
    Chunxiao Deng
    Feng Wang
    Gongchang Peng
    Journal of Energy Chemistry, 2016, 25 (05) : 817 - 824
  • [33] SnO2/Reduced Graphene Oxide Nanocomposite as Anode Material for Lithium-Ion Batteries with Enhanced Cyclability
    Jiang, Wenjuan
    Zhao, Xike
    Ma, Zengsheng
    Lin, Jianguo
    Lu, Chunsheng
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (04) : 4136 - 4140
  • [34] Influence of graphene oxide on electrochemical performance of Si anode material for lithium-ion batteries
    Liu, Wenjing
    Jiang, Jinjin
    Wang, Hao
    Deng, Chunxiao
    Wang, Feng
    Peng, Gongchang
    JOURNAL OF ENERGY CHEMISTRY, 2016, 25 (05) : 817 - 824
  • [35] Graphite-graphene composite as an anode for lithium-ion batteries
    Strativnov E.
    Khovavko A.
    Nie G.
    Ji P.-G.
    Applied Nanoscience (Switzerland), 2023, 13 (12): : 7531 - 7536
  • [36] CuO/graphene composite as anode materials for lithium-ion batteries
    Mai, Y. J.
    Wang, X. L.
    Xiang, J. Y.
    Qiao, Y. Q.
    Zhang, D.
    Gu, C. D.
    Tu, J. P.
    ELECTROCHIMICA ACTA, 2011, 56 (05) : 2306 - 2311
  • [37] Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries
    Li, Xiaohui
    Wu, Mengqiang
    Feng, Tingting
    Xu, Ziqiang
    Qin, Jingang
    Chen, Cheng
    Tu, Chengyang
    Wang, Dongxia
    RSC ADVANCES, 2017, 7 (76) : 48286 - 48293
  • [38] Hydrothermally enhanced MnO/reduced graphite oxide composite anode materials for high performance lithium-ion batteries
    Zou, Bang-Kun
    Zhang, Yon-Yu
    Wang, Jia-Yi
    Liang, Xin
    Ma, Xiao-Hang
    Chen, Chun-Hua
    ELECTROCHIMICA ACTA, 2015, 167 : 25 - 31
  • [39] SiOx/C Composite Anode of Lithium-Ion Batteries with Enhanced Performances Using Multicomponent Binders
    Liu, Haoyuan
    Huangzhang, Encheng
    Sun, Chenhao
    Fan, Yanchao
    Ma, Zhen
    Zhao, Xiaoyang
    Nan, Junmin
    ACS OMEGA, 2021, 6 (40): : 26805 - 26813
  • [40] Facile fabrication and electrochemical properties of high-quality reduced graphene oxide/cobalt sulfide composite as anode material for lithium-ion batteries
    Li, Zhangpeng
    Li, Wenyue
    Xue, Hongtao
    Kang, Wenpei
    Yang, Xia
    Sun, Mingliang
    Tang, Yongbing
    Lee, Chun-Sing
    RSC ADVANCES, 2014, 4 (70): : 37180 - 37186