Opportunistic Entanglement Distribution for the Quantum Internet

被引:51
|
作者
Gyongyosi, Laszlo [1 ,2 ,3 ]
Imre, Sandor [2 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] Budapest Univ Technol & Econ, Dept Networked Syst & Serv, H-1117 Budapest, Hungary
[3] Hungarian Acad Sci, MTA BME Informat Syst Res Grp, H-1051 Budapest, Hungary
基金
匈牙利科学研究基金会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
COMMUNICATION; REPEATERS; FIDELITY; SCHEME;
D O I
10.1038/s41598-019-38495-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum entanglement is a building block of the entangled quantum networks of the quantum Internet. A fundamental problem of the quantum Internet is entanglement distribution. Since quantum entanglement will be fundamental to any future quantum networking scenarios, the distribution mechanism of quantum entanglement is a critical and emerging issue in quantum networks. Here we define the method of opportunistic entanglement distribution for the quantum Internet. The opportunistic model defines distribution sets that are aimed to select those quantum nodes for which the cost function picks up a local minimum. The cost function utilizes the error patterns of the local quantum memories and the predictability of the evolution of the entanglement fidelities. Our method provides efficient entanglement distributing with respect to the actual statuses of the local quantum memories of the node pairs. The model provides an easily-applicable, moderate-complexity solution for high-fidelity entanglement distribution in experimental quantum Internet scenarios.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] When Entanglement Meets Classical Communications: Quantum Teleportation for the Quantum Internet
    Cacciapuoti, Angela Sara
    Caleffi, Marcello
    Van Meter, Rodney
    Hanzo, Lajos
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (06) : 3808 - 3833
  • [32] Fourier Behind Entanglement: A Spectral Approach to the Quantum Internet
    Mastriani, Mario
    ANNALEN DER PHYSIK, 2022, 534 (01)
  • [33] Breaking fundamental limits of quantum entanglement distribution with quantum switch
    Xu, Ruiqing
    Zhou, Rigui
    Li, Yaochong
    Tongxin Xuebao/Journal on Communications, 2024, 45 (10): : 69 - 80
  • [34] Quantum momentum distribution and quantum entanglement in the deep tunneling regime
    Wu, Yantao
    Car, Roberto
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (02):
  • [35] Toward the Advantages of Quantum Trajectories on Entanglement Distribution in Quantum Networks
    Xu, Ruiqing
    Zhou, Ri-Gui
    Li, Yaochong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (08) : 5170 - 5184
  • [36] Entanglement distribution and entangling power of quantum gates
    J. Batle
    M. Casas
    A. Plastino
    A. R. Plastino
    Optics and Spectroscopy, 2005, 99 : 371 - 378
  • [37] Entanglement distribution via noisy quantum channels
    Wang, Qiong
    Tan, Mei-Yuan
    Liu, Yun
    Zeng, Hao-Sheng
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (12)
  • [38] Quantum entanglement distribution with hybrid parity gate
    Mei, Feng
    Yu, Ya-Fei
    Feng, Xun-Li
    Zhang, Zhi-Ming
    Oh, C.H.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2010, 82 (05):
  • [39] Chip-to-chip quantum entanglement distribution
    Wang, J.
    Villa, M.
    Bonneau, D.
    Santagati, R.
    Silverstone, J. W.
    Erven, C.
    Miki, S.
    Yamashita, T.
    Fujiwara, M.
    Sasaki, M.
    Terai, H.
    Tanner, M. G.
    Natarajan, C. M.
    Hadfield, R. H.
    O'Brien, J. L.
    Thompson, M. G.
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [40] Entanglement-enhanced quantum key distribution
    Ahonen, Olli
    Mottonen, Mikko
    O'Brien, Jeremy L.
    PHYSICAL REVIEW A, 2008, 78 (03):