Hyperbolic orbits in an absolute Euclidean space-time

被引:2
|
作者
Montanus, H
机构
[1] 1325 PL Almere
关键词
deflection of light; hyperbolic orbits; absolute space-time; Euclidean space-time; theory of relativity;
D O I
10.4006/1.3025336
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fire consider hyperbolic orbits in an absolute Euclidean space-time. Analyses will be performed for massive objects moving at various speeds past a heavy source mass like the sun. In the limiting case of a massive object moving with the speed of light, the hyperbolic orbit turns out to be equal to the path of a photon. The contents of the paper contribute to the consistency of the theory of an absolute Euclidean space-time and support the idea that photons should be regarded as massive objects.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 50 条
  • [31] Cosmological aspects of the absolute space-time theory
    Marinov, S
    PHYSICS ESSAYS, 1996, 9 (03) : 357 - 367
  • [32] Absolute space-time measurements and gravitation.
    Tselnik, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1995, 110 (12): : 1435 - 1449
  • [33] Space-time and spatial geodesic orbits in Schwarzschild geometry
    Resca, Lorenzo
    EUROPEAN JOURNAL OF PHYSICS, 2018, 39 (03)
  • [34] CIRCULAR ORBITS AND RELATIVE STRAINS IN SCHWARZSCHILD SPACE-TIME
    DEFELICE, F
    USSEGLIOTOMASSET, S
    GENERAL RELATIVITY AND GRAVITATION, 1992, 24 (10) : 1091 - 1100
  • [35] Fundamental photon orbits in the double Schwarzschild space-time
    Fan, Zeyu
    Teo, Edward
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (11):
  • [36] Fundamental photon orbits in the double Schwarzschild space-time
    Zeyu Fan
    Edward Teo
    The European Physical Journal C, 82
  • [38] Domain space-time decomposition method for hyperbolic equations
    Agouzal, A
    Debit, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (08): : 957 - 960
  • [39] ORTHOMODULAR LATTICE IN LORENTZIAN GLOBALLY HYPERBOLIC SPACE-TIME
    Cegla, Wojciech
    Florek, Jan
    Jancewicz, Bernard
    REPORTS ON MATHEMATICAL PHYSICS, 2017, 79 (02) : 187 - 195
  • [40] Implicit Solution of Hyperbolic Equations with Space-Time Adaptivity
    Per Lötstedt
    Stefan Söderberg
    Alison Ramage
    Lina Hemmingsson-Frändén
    BIT Numerical Mathematics, 2002, 42 : 134 - 158