Homogeneous structures and rigidity of isoparametric submanifolds in Hilbert space

被引:6
|
作者
Gorodski, Claudio [1 ]
Heintze, Ernst [2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05508 Sao Paulo, Brazil
[2] Univ Augsburg, Math Inst, Augsburg, Germany
基金
巴西圣保罗研究基金会;
关键词
Isoparametric submanifold; Hilbert space; homogeneous structure; affine root systems; SYSTEMS;
D O I
10.1007/s11784-012-0079-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study isoparametric submanifolds of rank at least two in a separable Hilbert space, which are known to be homogeneous by the main result in [E. Heintze and X. Liu, Ann. of Math. (2), 149 (1999), 149-181], and with such a submanifold M and a point x in M we associate a canonical homogeneous structure I" (x) (a certain bilinear map defined on a subspace of T (x) M x T (x) M). We prove that I" (x) , together with the second fundamental form alpha (x) , encodes all the information about M, and we deduce from this the rigidity result that M is completely determined by alpha (x) and (Delta alpha) (x) , thereby making such submanifolds accessible to classification. As an essential step, we show that the one-parameter groups of isometries constructed in [E. Heintze and X. Liu, Ann. of Math. (2), 149 (1999), 149-181] to prove their homogeneity induce smooth and hence everywhere defined Killing fields, implying the continuity of I" (this result also seems to close a gap in [U. Christ, J. Differential Geom., 62 (2002), 1-15]). Here an important tool is the introduction of affine root systems of isoparametric submanifolds.
引用
收藏
页码:93 / 136
页数:44
相关论文
共 50 条
  • [21] THE TOPOLOGY OF ISOPARAMETRIC SUBMANIFOLDS
    HSIANG, WY
    PALAIS, RS
    TERNG, CL
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 27 (03) : 423 - 460
  • [22] Isoparametric families of submanifolds
    Harle, Carlos Edgard
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 473 - 485
  • [23] THE RIGIDITY OF MINIMAL SUBMANIFOLDS IN A LOCALLY SYMMETRIC SPACE
    Cao, Shunjuan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (01) : 135 - 142
  • [24] RIGIDITY THEOREMS FOR MINIMAL SUBMANIFOLDS IN A HYPERBOLIC SPACE
    Bezerra, Adriano C.
    Wang, Qiaoling
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 905 - 920
  • [25] Rigidity of complete minimal submanifolds in a hyperbolic space
    Hudson Pina de Oliveira
    Changyu Xia
    manuscripta mathematica, 2019, 158 : 21 - 30
  • [26] RIGIDITY OF MINIMAL SUBMANIFOLDS IN SPACE-FORMS
    BARBOSA, JLM
    DAJCZER, M
    JORGE, LP
    MATHEMATISCHE ANNALEN, 1984, 267 (04) : 433 - 437
  • [27] Rigidity of complete minimal submanifolds in a hyperbolic space
    de Oliveira, Hudson Pina
    Xia, Changyu
    MANUSCRIPTA MATHEMATICA, 2019, 158 (1-2) : 21 - 30
  • [28] PROJECTIVE SPACES IN THE ALGEBRAIC SETS OF PLANAR NORMAL SECTIONS OF HOMOGENEOUS ISOPARAMETRIC SUBMANIFOLDS
    Giunta, Ana M.
    Sanchez, Cristian U.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2014, 55 (01): : 139 - 154
  • [29] The geometry of homogeneous submanifolds of hyperbolic space
    Di Scala, AJ
    Olmos, C
    MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (01) : 199 - 209
  • [30] The geometry of homogeneous submanifolds of hyperbolic space
    Antonio J. Di Scala
    Carlos Olmos
    Mathematische Zeitschrift, 2001, 237 : 199 - 209