On semirings whose simple semimodules are projective

被引:1
|
作者
Il'in, S. N. [1 ]
机构
[1] Kazan Volga Reg Fed Univ, Lobachevskii Inst Math & Mech, Kazan, Russia
关键词
simple semimodule; projective semimodule; V-semiring; V*-semiring; V-SEMIRINGS;
D O I
10.1134/S0037446617020045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the semirings whose simple semimodules are all projective. In particular, we establish that for every semiring S this condition implies the injectivity of all simple S-semimodules and show that, in contrast to the case of rings, the projectivity of all simple semimodules in general is not a left-right symmetric property.
引用
收藏
页码:215 / 226
页数:12
相关论文
共 50 条
  • [21] Semimodules and semirings admitting a maximal factorization
    He, Yong
    Liu, Yu
    Wang, Kejie
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (10) : 2158 - 2172
  • [22] The further study of semimodules over commutative semirings
    Li, Yuying
    Xu, Xiaozhu
    Zhang, Haifeng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (20) : 4929 - 4950
  • [23] ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION
    DUDNIKOV, PI
    SAMBORSKII, SN
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01): : 91 - 105
  • [24] Axiomatizability of homological classes of semimodules over semirings
    Katsov, Y.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (10)
  • [25] PSEUDO k-FLAT SEMIMODULES IN SEMIRINGS
    Wang, Xiuli
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2012, 27 (01): : 61 - 72
  • [26] φ-prime Subsemimodules of Semimodules over Commutative Semirings
    Fatahi, Fatemeh
    Safakish, Reza
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (03): : 445 - 453
  • [27] On semimodules over commutative, additively idempotent semirings
    Sokratova, O
    SEMIGROUP FORUM, 2002, 64 (01) : 1 - 11
  • [28] On Semimodules over Commutative Additively Idempotent Semirings
    Sokratova O.
    Semigroup Forum, 2001, 64 (1) : 1 - 11
  • [29] Idempotent Subreducts of Semimodules over Commutative Semirings
    Stanovsky, David
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2009, 121 : 33 - 43
  • [30] NEW PUBLIC KEY CRYPTOSYSTEM BASED ON SEMIRINGS AND SEMIMODULES
    Trendafilov, Ivan D.
    Durcheva, Mariana I.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'11): PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE, 2011, 1410