UNB application of Stokes-Helmert's approach to geoid computation

被引:44
|
作者
Ellmann, A. [1 ]
Vanicek, P. [1 ]
机构
[1] Univ New Brunswick, Dept Geodesy & Geomat Engn, Fredericton, NB E3B 5A3, Canada
关键词
gravimetric geoid; boundary value problem; topographic effects; modified Stokes's formula;
D O I
10.1016/j.jog.2006.09.019
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Over the past two decades the so-called Stokes-Helmert method has been used for regional geoid determination at the University of New Brunswick (UNB). The present contribution summarizes the main principles of the UNB approach and successive theoretical developments. A two-space set-up is used for formulating the boundary value problem and defining gravity quantities, which would be appropriate for downward continuation from the Earth's surface to the geoid level. Focus of this paper is given on the topographical effects, which are formulated in their spherical form. UNB's solution of the Stokes boundary value problem employs a modified Stokes's formula in conjunction of the low-degree contribution of a global geopotential model (GGM). Various aspects at the regional geoid computations in the context of UNB's principles are illustrated by employing a new GRACE satellite mission based geopotential model for the numerical study. The new gravimetric geoid model is compared with local GPS-levelling data. Possible reasons of the detected discrepancies between the gravimetric geoid model and the control points are discussed. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:200 / 213
页数:14
相关论文
共 50 条
  • [1] Precise geoid computation using Stokes-Helmert's scheme and strict integrals of topographic effects
    Dongmei Guo
    Huiyou He
    Peng Sang
    Geodesy and Geodynamics, 2019, (04) : 290 - 296
  • [2] Precise geoid computation using Stokes-Helmert's scheme and strict integrals of topographic effects
    Guo, Dongmei
    He, Huiyou
    Sang, Peng
    GEODESY AND GEODYNAMICS, 2019, 10 (04) : 290 - 296
  • [3] On the indirect effect in the Stokes-Helmert method of geoid determination
    Sjöberg, LE
    Nahavandchi, H
    JOURNAL OF GEODESY, 1999, 73 (02) : 87 - 93
  • [4] Two different views of topographical and downward-continuation corrections in the Stokes-Helmert approach to geoid computation
    Nahavandchi, H
    Sjöberg, LE
    JOURNAL OF GEODESY, 2001, 74 (11-12) : 816 - 822
  • [5] Higher-degree reference field in the generalized Stokes-Helmert scheme for geoid computation
    Vanicek, P
    Najafi, M
    Martinec, Z
    Harrie, L
    Sjoberg, LE
    JOURNAL OF GEODESY, 1995, 70 (03) : 176 - 182
  • [6] Testing Stokes-Helmert geoid model computation on a synthetic gravity field: experiences and shortcomings
    Vanicek, Petr
    Kingdon, Robert
    Kuhn, Michael
    Ellmann, Artu
    Featherstone, Will E.
    Santos, Marcelo C.
    Martinec, Zdenek
    Hirt, Christian
    Avalos-Naranjo, David
    STUDIA GEOPHYSICA ET GEODAETICA, 2013, 57 (03) : 369 - 400
  • [7] Testing Stokes-Helmert geoid model computation on a synthetic gravity field: experiences and shortcomings
    Petr Vaníček
    Robert Kingdon
    Michael Kuhn
    Artu Ellmann
    Will E. Featherstone
    Marcelo C. Santos
    Zdeněk Martinec
    Christian Hirt
    David Avalos-Naranjo
    Studia Geophysica et Geodaetica, 2013, 57 : 369 - 400
  • [8] Topographic effects by the Stokes-Helmert method of geoid and quasi-geoid determinations
    Sjöberg, LE
    JOURNAL OF GEODESY, 2000, 74 (02) : 255 - 268
  • [9] A regional Stokes-Helmert geoid determination for Costa Rica (GCR-RSH-2020): computation and evaluation
    Garbanzo-Leon, Jaime
    Fernandez, Alonso Vega
    Sanchez, Mauricio Varela
    Salvatierra, Juan Picado
    Kingdon, Robert W.
    Lucke, Oscar H.
    CONTRIBUTIONS TO GEOPHYSICS AND GEODESY, 2020, 50 (02): : 223 - 247
  • [10] The direct topographical correction in gravimetric geoid determination by the Stokes-Helmert method
    Nahavandchi, H
    JOURNAL OF GEODESY, 2000, 74 (06) : 488 - 496