Equilibrium states of iterated random maps arising in evolutionary algorithms

被引:0
|
作者
Hernandez, G [1 ]
Niño, F [1 ]
Quas, A [1 ]
Dasgupta, D [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
evolutionary algorithms; iterated random maps; ergodic theory; equilibrium states;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies the equilibrium states and the dynamical entropy of iterated random maps that arise in modeling a class of evolutionary algorithms.
引用
收藏
页码:1052 / 1055
页数:4
相关论文
共 50 条
  • [41] Directly Optimizing Topology-Preserving Maps with Evolutionary Algorithms
    Maia, Jose Everardo B.
    Coelho, Andre L. V.
    Barreto, Guilherme A.
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT I, 2009, 5506 : 1180 - +
  • [42] Training iterated protocols for distillation of GHZ states with variational quantum algorithms
    Rozgonyi, Aron
    Szechenyi, Gabor
    Kalman, Orsolya
    Kiss, Tamas
    PHYSICS LETTERS A, 2024, 499
  • [43] PERSISTENCE PROBABILITY OF A RANDOM POLYNOMIAL ARISING FROM EVOLUTIONARY GAME THEORY
    Van Hao Can
    Manh Hong Duong
    Viet Viet Hung Pham
    JOURNAL OF APPLIED PROBABILITY, 2019, 56 (03) : 870 - 890
  • [44] Random dynamical systems arising from iterated function systems with place-dependent probabilities
    Kwiecinska, AA
    Slomczynski, W
    STATISTICS & PROBABILITY LETTERS, 2000, 50 (04) : 401 - 407
  • [45] Equilibrium states for quasigeostrophic flows with random topography
    Klyatskin, VI
    IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA, 1995, 31 (06): : 749 - 754
  • [46] EQUILIBRIUM STATES, PRESSURE AND ESCAPE FOR MULTIMODAL MAPS WITH HOLES
    Demers, Mark F.
    Todd, Mike
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 221 (01) : 367 - 424
  • [47] Equilibrium states for non-uniformly expanding maps
    Oliveira, K
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 1891 - 1905
  • [49] Equilibrium states, pressure and escape for multimodal maps with holes
    Mark F. Demers
    Mike Todd
    Israel Journal of Mathematics, 2017, 221 : 367 - 424
  • [50] ERGODIC-THEORY OF EQUILIBRIUM STATES FOR RATIONAL MAPS
    DENKER, M
    URBANSKI, M
    NONLINEARITY, 1991, 4 (01) : 103 - 134