Image Segmentation and Dynamic Lineage Analysis in Single-Cell Fluorescence Microscopy

被引:67
|
作者
Wang, Quanli [1 ,2 ]
Niemi, Jarad [1 ]
Tan, Chee-Meng [3 ]
You, Lingchong [2 ,3 ]
West, Mike [1 ,2 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Duke Univ, Inst Genome Sci & Policy, Durham, NC 27708 USA
[3] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
cell tracking; fluorescent microscopy; hybrid image filters; image masking; image segmentation; single-cell lineage tracking; STOCHASTIC GENE-EXPRESSION; TRACKING; NOISE; DIFFERENTIATION; DEPENDENCE; CIRCUIT; NETWORK; LEVEL; CYCLE;
D O I
10.1002/cyto.a.20812
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An increasingly common component of studies in synthetic and systems biology is analysis of dynamics of gene expression at the single-cell level, a Context that is heavily dependent on the use of time-lapse movies. Extracting quantitative data on the single-cell temporal dynamics from such movies remains a major challenge. Here, we describe novel methods for automating key steps in the analysis of single-cell, fluorescent images-segmentation and lineage reconstruction-to recognize and track individual cells over time. The automated analysis iteratively combines a set of extended morphological methods for segmentation, and uses a neighborhood-based scoring method for frame-to-frame lineage linking. Our studies with bacteria, budding yeast and human cells, demonstrate the portability and usability of these methods, whether using phase, bright field or fluorescent images. These examples also demonstrate the utility of our integrated approach in facilitating analyses of engineered and natural cellular networks in diverse settings. The automated methods are implemented in freely available, open-source software. (C) 2009 International Society for Advancement of Cytometry
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
  • [31] Segmentation-based analysis of single-cell immunoblots
    Gopal, Anjali
    Herr, Amy E.
    [J]. ELECTROPHORESIS, 2021, 42 (20) : 2070 - 2080
  • [32] Automated cell cycle analysis with fluorescence microscopy and image analysis
    Bocker, W
    Gantenberg, HW
    Muller, WU
    Streffer, C
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 1996, 41 (03): : 523 - 537
  • [33] Microfluidic techniques for dynamic single-cell analysis
    Yan Wang
    Zhen-zhen Chen
    Qing-ling Li
    [J]. Microchimica Acta, 2010, 168 : 177 - 195
  • [34] Advances in atomic force microscopy for single-cell analysis
    Li, Mi
    Xi, Ning
    Wang, Yuechao
    Liu, Lianqing
    [J]. NANO RESEARCH, 2019, 12 (04) : 703 - 718
  • [35] Microfluidic techniques for dynamic single-cell analysis
    Wang, Yan
    Chen, Zhen-zhen
    Li, Qing-ling
    [J]. MICROCHIMICA ACTA, 2010, 168 (3-4) : 177 - 195
  • [36] Dynamic single-cell analysis for quantitative biology
    Di Carlo, Dino
    Lee, Luke P.
    [J]. ANALYTICAL CHEMISTRY, 2006, 78 (23) : 7918 - 7925
  • [37] Single-cell lysis for visual analysis by electron microscopy
    Kemmerling, Simon
    Arnold, Stefan A.
    Bircher, Benjamin A.
    Sauter, Nora
    Escobedo, Carlos
    Dernick, Gregor
    Hierlemann, Andreas
    Stahlberg, Henning
    Braun, Thomas
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2013, 183 (03) : 467 - 473
  • [38] Advances in atomic force microscopy for single-cell analysis
    Mi Li
    Ning Xi
    Yuechao Wang
    Lianqing Liu
    [J]. Nano Research, 2019, 12 : 703 - 718
  • [39] Cell Lineage and Pseudotime Inference for Single-cell Transcriptomics Analysis of Chemoresistance in GBM
    Preddy, Isabelle
    Perrault, Ella
    Ahmed, Atique
    [J]. NEUROLOGY, 2023, 100 (17)
  • [40] Single-cell analysis in a plastic microfluidic channel with a Hadamard transform microscopic fluorescence image system
    Li, T
    Tang, HW
    Luo, MN
    Chen, GQ
    [J]. ANALYTICAL LETTERS, 2004, 37 (10) : 2053 - 2065