Quantum Monte Carlo simulation of tunneling devices using Bohm trajectories

被引:0
|
作者
Oriols, X [1 ]
GarciaGarcia, JJ [1 ]
Martin, F [1 ]
Sune, J [1 ]
Gonzalez, T [1 ]
Mateos, J [1 ]
Pardo, D [1 ]
机构
[1] UNIV SALAMANCA, DEPT FIS APLICADA, E-37008 SALAMANCA, SPAIN
来源
PHYSICA STATUS SOLIDI B-BASIC RESEARCH | 1997年 / 204卷 / 01期
关键词
D O I
10.1002/1521-3951(199711)204:1<404::AID-PSSB404>3.0.CO;2-A
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A. generalization of the classical Monte Carlo (MC) device simulation technique is proposed to simultaneously deal with quantum-mechanical phase-coherence effects and scattering interactions in tunneling devices. The proposed method restricts the quantum treatment of transport to the regions of the device where the potential profile significantly changes in distances of the order of the de Broglie wavelength of the carriers (the quantum window). Bohm trajectories associated to time dependent Gaussian wavepackets are used to simulate the electron transport in the quantum window. Outside this window, the classical ensemble simulation technique is used. Classical and quantum trajectories are smoothly matched at the boundaries of the quantum window according to a criterium of total energy conservation. A simple one-dimensional simulator for resonant tunneling diodes is presented to demonstrate the feasibility of our proposal.
引用
收藏
页码:404 / 407
页数:4
相关论文
共 50 条
  • [31] Quantum Monte Carlo simulation of resonant tunneling diodes based on the Wigner distribution function formalism
    García-García, J
    Martín, F
    Oriols, X
    Suñé, J
    APPLIED PHYSICS LETTERS, 1998, 73 (24) : 3539 - 3541
  • [32] Quantum Corrected Monte Carlo Simulation of Semiconductor Devices Using the Effective Conduction-Band Edge Method
    Ting-Wei Tang
    Bo Wu
    Journal of Computational Electronics, 2003, 2 : 131 - 135
  • [33] Quantum Corrected Monte Carlo Simulation of Semiconductor Devices Using the Effective Conduction-Band Edge Method
    Tang, Ting-Wei
    Wu, Bo
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2003, 2 (2-4) : 131 - 135
  • [34] Quantum transport simulation of nanoscale semiconductor devices based on Wigner Monte Carlo approach
    Koba, Shunsuke
    Aoyagi, Ryo
    Tsuchiya, Hideaki
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)
  • [35] Quantum mechanical effects on noise properties of nanoelectronic devices: Application to Monte Carlo simulation
    Oriols, X
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (09) : 1830 - 1836
  • [36] Bohm trajectories in quantum transport
    Barker, JR
    Proceedings of the Conference Progress in Nonequilibrium Green's Functions II, 2003, : 198 - 213
  • [37] Oscillatory Bohm trajectories in resonant tunneling structures
    Oriols, X
    Martin, F
    Sune, J
    SOLID STATE COMMUNICATIONS, 1996, 99 (02) : 123 - 128
  • [38] Comparison of Quantum Corrections for Monte Carlo Simulation
    Winstead B.
    Tsuchiya H.
    Ravaioli U.
    Journal of Computational Electronics, 2002, 1 (1-2) : 201 - 207
  • [39] Quantum Monte Carlo simulation of atomic motion
    Wahnström, Göran
    Mattsson, Thomas R.
    Computer Physics Communications, 1999, 121 : 477 - 479
  • [40] Quantum Monte Carlo simulation with a black hole
    Benic, Sanjin
    Yamamoto, Arata
    PHYSICAL REVIEW D, 2016, 93 (09)