Mimicking the cochlea with an active acoustic metamaterial

被引:27
|
作者
Rupin, Matthieu [1 ,3 ]
Lerosey, Geoffroy [2 ]
de Rosny, Julien [1 ]
Lemoult, Fabrice [1 ]
机构
[1] PSL Res Univ, Inst Langevin, ESPCI Paris, CNRS UMR 7587, 1 Rue Jussieu, F-75005 Paris, France
[2] ESPCI Paris Incubator PCup, Greenerwave, 6 Rue Jean Calvin, F-75005 Paris, France
[3] Hap2U, 20 Rue Tour Eau, F-38400 St Martin Dheres, France
来源
NEW JOURNAL OF PHYSICS | 2019年 / 21卷 / 09期
关键词
acoustics; inner ear; hearing; metamaterial; MEMBRANE; ABSORPTION; HEARING; INDEX; WAVES; MODEL;
D O I
10.1088/1367-2630/ab3d8f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The human ear is a fascinating sensor, capable of detecting pressures over ten octaves of frequency and twelve orders of magnitudes. Here, following a biophysical model, we demonstrate experimentally that the physics of a living cochlea can be emulated by an active one-dimensional acoustic metamaterial. The latter solely consists on a set of subwavelength active acoustic resonators, coupled to a main propagating waveguide. By introducing a gradient in the resonators' properties, we establish an experimental set-up which mimics the dynamical responses of both the dead and the living cochleae: the cochlear tonotopy as well as the low-amplitude sound amplifier are reproduced.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Acoustic Metamaterial with Negative Parameter
    Sun, Hongwei
    Yan, Fei
    Gu, Hao
    Li, Ying
    NONDESTRUCTIVE CHARACTERIZATION FOR COMPOSITE MATERIALS, AEROSPACE ENGINEERING, CIVIL INFRASTRUCTURE, AND HOMELAND SECURITY 2014, 2014, 9063
  • [42] Acoustic energy harvesting based on a planar acoustic metamaterial
    Qi, Shuibao
    Oudich, Mourad
    Li, Yong
    Assouar, Badreddine
    APPLIED PHYSICS LETTERS, 2016, 108 (26)
  • [43] Copying the cochlea: Micromachined biomimetic acoustic sensors
    White, R. D.
    Littrell, R.
    Grosh, K.
    STRUCTURAL HEALTH MONITORING 2007: QUANTIFICATION, VALIDATION, AND IMPLEMENTATION, VOLS 1 AND 2, 2007, : 1447 - 1454
  • [44] A mechanical-electrical-acoustic model of the cochlea
    Grosh, Karl
    Deo, Niranjan
    Cheng, Lei
    Ramamoorthy, Sripriya
    Auditory Mechanisms: Processes and Models, 2006, : 410 - 416
  • [45] NUMERICAL SIMULATION OF ACOUSTIC STREAMING WITHIN THE COCHLEA
    Gerstenberger, Christian
    Wolter, Franz-Erich
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2013, 21 (04)
  • [46] Temperature-controlled tunable acoustic metamaterial with active band gap and negative bulk modulus
    Xia, Baizhan
    Chen, Ning
    Xie, Longxiang
    Qin, Yuan
    Yu, Dejie
    APPLIED ACOUSTICS, 2016, 112 : 1 - 9
  • [47] Active Acoustic Metamaterial Based on Helmholtz Resonators to Absorb Broadband Low-Frequency Noise
    Hedayati, Reza
    Lakshmanan, Sandhya P.
    MATERIALS, 2024, 17 (04)
  • [48] MEASUREMENTS OF ACOUSTIC INPUT IMPEDANCE OF COCHLEA IN CATS
    LYNCH, TJ
    NEDZELNITSKY, V
    PEAKE, WT
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1976, 59 : S30 - S30
  • [49] IMPEDANCE CHANGES IN COCHLEA DURING ACOUSTIC STIMULATION
    HONRUBIA, V
    STRELIOFF, D
    HAAS, GF
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1971, 49 (01): : 121 - +
  • [50] Electrode estimation in the acoustic region of the human Cochlea
    Polak, Marek
    Lorens, Artur
    Furmanek, Mariusz
    Skarzynski, Henryk
    ACTA OTO-LARYNGOLOGICA, 2020, 140 (06) : 487 - 496